首页> 外文会议>Composites at Lake Louise 2017 >DNA-PROTEIN NANOCOMPOSITES: MICROSCALE STRUCTURES WITH MOLECULAR PRECISION
【24h】

DNA-PROTEIN NANOCOMPOSITES: MICROSCALE STRUCTURES WITH MOLECULAR PRECISION

机译:DNA蛋白质纳米复合材料:具有分子精度的微尺度结构

获取原文
获取原文并翻译 | 示例

摘要

DNA is unique in its programmability and addressability. The ability of complementary sequences of DNA to recognize and bind to each other makes it an almost universal tool for controlling the assembly of nanoscale objects over small distances. DNA origami [1] is a particularly powerful self-assembly approach, serving to create breadboards on which to assemble nanostructures, but is limited to length scales below 100 nm. Attempts to extend its spatial scale lead to structures that assemble with poor yields, and for which size and mechanical rigidity must be traded off against one another. Here, we present a new paradigm for producing large, micrometer-scale structures, whilst maintaining the precision and programmability offered by DNA. We show that poor yields are a result of having too many unique components in the self-assembling system [2], and that poor mechanical rigidity is an intrinsic limitation of DNA. We overcome these limitations by using RecA, a DNA-binding protein, to increase the stiffness of our DNA nanostructures. The composite RecA-DNA structure has a persistence length almost an order of magnitude greater than that of double-stranded DNA (dsDNA) alone. RecA also acts as a generic component in our self-assembly scheme, since it binds in a non-sequence specific way to dsDNA. In addition, once one RecA monomer binds to dsDNA, the binding probability for other monomers increases. This cooperative binding feature means that any region of dsDNA becomes completely and uniformly coated with protein with almost perfect yield. We can thus build large, rigid structures in this way. To maintain our ability to address the structure with molecular precision, we create small origami breadboards at specific locations within the larger structure. In this way, we minimize the number of unique components involved in the assembly process, and therefore the number of pathways by which an incorrect structure can form. Our approach enables us to create micrometer-scale structures with molecular precision [4].
机译:DNA的可编程性和寻址能力是独一无二的。 DNA互补序列相互识别和结合的能力使其成为控制纳米级物体小距离组装的通用工具。 DNA折纸[1]是一种特别强大的自组装方法,用于创建可在其上组装纳米结构的试验板,但限于100 nm以下的长度范围。试图扩大其空间规模会导致组装时的产量不佳,因此必须在尺寸和机械刚性之间进行权衡。在这里,我们提出了一种新的范式,用于生产大型的微米级结构,同时保持了DNA提供的精度和可编程性。我们表明,不良的产量是自组装系统中存在太多独特成分的结果[2],不良的机械刚性是DNA的固有局限性。我们通过使用DNA结合蛋白RecA克服了这些局限性,从而提高了DNA纳米结构的刚度。复合RecA-DNA结构的持久性长度比单独的双链DNA(dsDNA)的持久性长度大一个数量级。 RecA在我们的自组装方案中也充当通用组件,因为它以非序列特异性方式与dsDNA结合。此外,一旦一个RecA单体与dsDNA结合,其他单体的结合概率就会增加。这种合作结合特征意味着dsDNA的任何区域都被蛋白质完全均匀地包被,几乎达到完美的产量。因此,我们可以通过这种方式构建大型的刚性结构。为了保持以分子精度处理结构的能力,我们在较大结构的特定位置创建了小型折纸面包板。通过这种方式,我们将组装过程中涉及的唯一零件的数量减至最少,从而将错误的结构形成的途径数量减至最少。我们的方法使我们能够创建具有分子精度的微米级结构[4]。

著录项

  • 来源
    《Composites at Lake Louise 2017》|2017年|17-17|共1页
  • 会议地点 Lake Louise(CA)
  • 作者单位

    Center for Nanoscale Science and Technology, NIST, USA;

    Center for Nanoscale Science and Technology, NIST, USA;

    Center for Nanoscale Science and Technology, NIST Maryland NanoCenter, University of Maryland, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Self-assembly; DNA;

    机译:自组装;脱氧核糖核酸;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号