首页> 外文会议>Composites at Lake Louise 2017 >CONTROLLING AND CHARACTERIZING MICROSTRUCTURE IN LITHIUM-ION BATTERY ELECTRODES
【24h】

CONTROLLING AND CHARACTERIZING MICROSTRUCTURE IN LITHIUM-ION BATTERY ELECTRODES

机译:锂离子电池电极的微结构控制和表征

获取原文
获取原文并翻译 | 示例

摘要

Lithium-ion battery electrodes consist of a functional composite containing electroactive solid particles where redox reactions occur, conductive additives, a polymeric binder to provide mechanical support, and void regions filled with electrolyte during cell fabrication. While much of the focus in the battery materials field is on the chemistry of the electroactive materials that dictate the fundamental limits on the energy density of the cell, the morphology of the electroactive materials and the microstructure of the electrode also have a significant influence on the resulting electrochemical properties. An example of an electrode microstructure is shown in Figure 1. For certain operating conditions and electrode architectures the transport of ions through the electrode microstructure can limit the performance of the cell, which means that controlling and understanding the microstructure can open up battery designs that improve the performance and energy density at the cell level. This strategy should be broadly applicable to multiple battery materials. In this paper, we will describe progress in our lab in synthesizing battery electroactive particles of controllable morphology and processing these particles into composite electrodes. The size, shape, and polydispersity of the particles results in different packing in the electrode and thus different electrode microstructures, while the active material composition is kept constant. Characterization of these electrodes to elucidate microstructure effects on electrochemical performance will also be described, in particular how different transport limitations become relevant for different electrode geometries. Measurements of the tortuosity of the electrodes will be detailed, and the conditions will be determined where transport is limited either within the electroactive particles or through the electrode microstructure. The electrodes described in this paper are functional composites for energy storage applications which is of relevance to the topical theme of this conference.
机译:锂离子电池电极由功能性复合材料组成,该功能性复合材料包含发生氧化还原反应的电活性固体颗粒,导电添加剂,提供机械支撑的聚合物粘合剂以及在电池制造过程中填充电解质的空隙区域。尽管电池材料领域的许多重点是决定电池能量密度的基本极限的电活性材料的化学性质,但电活性材料的形态和电极的微观结构也对电池的能量密度产生重大影响。产生的电化学性能。电极微结构的一个示例如图1所示。对于某些操作条件和电极体系结构,离子通过电极微结构的传输会限制电池的性能,这意味着控制和理解微结构可以改善电池设计,从而改善单元级别的性能和能量密度。该策略应广泛适用于多种电池材料。在本文中,我们将描述在实验室中合成形态可控的电池电活性颗粒并将这些颗粒加工成复合电极的进展。颗粒的尺寸,形状和多分散性导致电极中的堆积不同,因此电极的微结构也不同,同时活性物质的组成保持恒定。还将说明这些电极的特性,以阐明微观结构对电化学性能的影响,尤其是不同的运输限制如何与不同的电极几何形状相关。将详细描述电极的曲折度的测量,并确定在电活性颗粒内或通过电极微结构限制传输的条件。本文介绍的电极是用于能量存储应用的功能性复合材料,与本次会议的主题相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号