首页> 外文会议>Conference on nonstoichiometric compounds >THE ELECTROCHEMICAL INTERFACE AND STOCHASTIC FUNCTIONS: A DATA-DRIVEN APPROACH TO MODELING NON-IDEAL BEHAVIOR IN CONCENTRATED SYSTEMS
【24h】

THE ELECTROCHEMICAL INTERFACE AND STOCHASTIC FUNCTIONS: A DATA-DRIVEN APPROACH TO MODELING NON-IDEAL BEHAVIOR IN CONCENTRATED SYSTEMS

机译:电化学界面和随机函数:集中式系统中非理想行为建模的数据驱动方法

获取原文

摘要

Researchers in the ionics field make frequent use of the mass-action principle - or the assumption of ideal thermodynamic behavior - in its physical models. These models are relatively easy to work with, leading to many useful and convenient formulae. However, they are strictly correct only in the limit of infinite dilution, and over-reliance on mass-action models in concentrated systems can lead to models that are grossly incorrect when compared with experimental reality. Recent microscopic experimental results gathered at surfaces and interfaces of ionic and mixed ionic-electronic conductors provide a striking example: classical models utilizing mass-action assumptions routinely underpredict the thickness of defect accumulation zones by an order of magnitude. Although atomistic models can be employed for concentrated systems, their utility is limited to very small simulation domains: continuum models must be used to predict the behavior of devices. A key issue in any continuum-level thermodynamic treatment is the intractability of the microscopic defect interaction problem: beyond the ideal case, very few closed form solutions for the free energy in terms of concentrations are available. This presentation will introduce a data-driven methodology for determining these functions using either experimental or theoretical datasets. The method utilizes Gaussian process stochastic functions to represent the unknown functional relationships between defect concentrations and free energy, and calibrates these functions to data using Bayesian methods for calibration and model selection. A continuum model for the structure of electrochemical interfaces in concentrated systems is the 'Poisson-Cahn' theory, which incorporates defect interactions and, crucially, gradient effects in a model that has proven successful in the replication of both macroscopic and microscopic experimental results. The data-driven approach to model building will be demonstrated in the context of Poisson-Cahn variational approaches applied to microscopic experimental datasets for grain boundaries in calcium-doped ceria.
机译:离子学领域的研究人员经常在其物理模型中使用质量作用原理-或理想热力学行为的假设。这些模型相对易于使用,从而产生了许多有用且方便的公式。但是,它们仅在无限稀释的极限内是严格正确的,并且与集中式系统相比,对浓缩系统中质量模型的过度依赖可能导致模型完全错误。最近在离子和混合离子电子导体的表面和界面处收集到的微观实验结果提供了一个引人注目的例子:利用质量作用假设的经典模型通常会将缺陷累积区的厚度预测降低一个数量级。尽管原子模型可用于集中式系统,但其效用仅限于很小的仿真域:必须使用连续模型来预测设备的行为。在任何连续水平热力学处理中,一个关键问题是微观缺陷相互作用问题的棘手性:在理想情况下,很少有针对浓度的自由能的封闭形式解决方案。本演讲将介绍一种使用数据或实验数据集确定这些功能的数据驱动方法。该方法利用高斯过程随机函数表示缺陷浓度和自由能之间的未知函数关系,并使用贝叶斯方法将这些函数校准为数据以进行校准和模型选择。泊松-卡恩(Poisson-Cahn)理论是浓缩系统中电化学界面结构的连续模型,该模型结合了缺陷相互作用和至关重要的梯度效应,该模型已被证明可成功复制宏观和微观实验结果。数据驱动的模型建立方法将在Poisson-Cahn变分方法的背景下得到证明,该方法应用于掺钙二氧化铈晶粒边界的微观实验数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号