首页> 外文会议>Conference on Lasers and Electro-Optics Europe;European Quantum Electronics Conference >Towards attosecond XUV-pump XUV-probe measurements in the 100-eV region
【24h】

Towards attosecond XUV-pump XUV-probe measurements in the 100-eV region

机译:在100-eV范围内进行亚秒级XUV泵XUV探针测量

获取原文

摘要

Summary form only given. Nonlinear photoionization with energetic FEL pulses has opened up new horizons for the investigation of inner-shell electron dynamics in atomic and molecular systems [1]. So far, however, the limited temporal resolution (typically a few tens of femtoseconds) achievable with FELs has hampered the time resolution of these dynamics.Laser-driven XUV-sources are capable of producing isolated attosecond pulses and offer an alternative to FELs. However, the comparatively low pulse energies delivered by these sources has impeded their application to nonlinear optics. So far, only a few groups have demonstrated multi-photon ionization processes using laserdriven XUV-sources with photon energies below 50 eV [2-5]. Here, we use a novel laser-driven XUV-source to investigate and quantify nonlinear photoemission within the giant 4d resonance of xenon, at photon energies of 93 eV and 115 eV. Our XUV source [6], which is based on high-harmonic generation in the gas phase, is driven by a 10-Hz multi-TW laser system, the `Light-Wave Synthesizer 20' (LWS-20), that delivers sub-two-cycle 75 mJ pulses with a central wavelength around 740 nm [7], and from which we used 40 mJ on target. This high pulse energy allows for increasing the focus diameter to 365 micron full width at half maximum (FWHM), while maintaining a peak intensity on the order of 1015 W/cm2. The 35 m long beamline is designed to accommodate a loose focusing (f =17 m) into the generation chamber as well as a tight refocusing (XUV expansion length = 12.5 m) in the experimental chamber. The XUV pulse energy contained in the Zr transmission window (i.e. between 65 eV to the cutoff at 130 eV) amounts up to ~40 nJ. This is two orders of magnitude larger than what is typically achieved with kHz few-cycle driving pulses [8]. For the study of XUV-matter interactions, the XUV beam is focused into a xenon gas target, where different ionic charge states are generated via XUV photoionization. An ion microscope [9] is used to record the spatial distribution of the different charge states in the focus. The measured data allows for the characterization of the XUV focus and the determination of the two-photon ionization cross sections, which are compared to the predictions made with different theoretical models [10-12]. The present investigation of nonlinear photoemission in the 100-eV spectral region using a laser-driven XUV source represents a major step towards attosecond XUV-pump XUV-probe measurements in the 100-eV region and the study of time resolved non-linear inner-shell dynamics.
机译:仅提供摘要表格。具有高能FEL脉冲的非线性光电离技术为研究原子和分子系统中的内壳电子动力学开辟了新的视野[1]。然而,到目前为止,FEL所能达到的时间分辨率有限(通常为几十飞秒)阻碍了这些动力学的时间分辨率。激光驱动的XUV源能够产生孤立的阿秒脉冲,并可以替代FEL。然而,这些源所传递的相对较低的脉冲能量阻碍了它们在非线性光学中的应用。到目前为止,只有少数几个小组使用光子能量低于50 eV的激光驱动XUV源证明了多光子电离过程[2-5]。在这里,我们使用一种新颖的激光驱动XUV源来研究和量化在93 eV和115 eV的光子能量下,氙气的巨大4d共振内的非线性光发射。我们的XUV光源[6]基于气相中的高谐波产生,由10 Hz多TW激光系统“光波合成器20”(LWS-20)驱动,可提供-两周期75 mJ脉冲,中心波长在740 nm左右[7],从中我们在目标上使用40 mJ。这种高脉冲能量可将聚焦直径增加到半峰全宽365微米(FWHM),同时将峰值强度保持在1015 W / cm2的数量级。 35 m长的光束线设计用于在生成室中容纳散焦(f = 17 m),并在实验室中进行紧密的重新聚焦(XUV扩展长度= 12.5 m)。 Zr传输窗口中包含的XUV脉冲能量(即65 eV至130 eV的截止之间)总计约为40 nJ。这比用kHz几周期驱动脉冲通常获得的结果大两个数量级[8]。为了研究XUV物质的相互作用,将XUV束聚焦到氙气靶上,通过XUV光电离产生不同的离子电荷态。离子显微镜[9]用于记录焦点中不同电荷状态的空间分布。测得的数据可用于表征XUV焦点和确定双光子电离截面,并将其与使用不同理论模型做出的预测进行比较[10-12]。目前使用激光驱动的XUV光源对100-eV光谱区域中的非线性光发射进行的研究代表了向100-eV区域中的阿秒XUV-泵浦XUV-探针测量迈出的重要一步,并研究了时间分辨的非线性内部外壳动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号