首页> 外文会议>Canadian Congress of Applied Mechanics(CANCAM 2005); 20050530-0602; Montreal(CA) >A Fast Aeroelasticity Computational Technique for Aircraft Wing Structure Optimization
【24h】

A Fast Aeroelasticity Computational Technique for Aircraft Wing Structure Optimization

机译:飞机机翼结构优化的快速气动弹性计算技术

获取原文
获取原文并翻译 | 示例

摘要

In the first stage of aircraft wing design, the variation of several parameters related to the structure surrounded by a flow requires numerical simulations in aeroelasticity which often takes a long computing time. Aeroelasticity can be defined as the study of mutual interactions between aerodynamic, iner-tial and elastic forces on flexible structures. There are several mathematical models governing transonic flows; however, some have limited applications such as the solution of the linearized compressible potential equation, or the solution of the small transonic disturbances (TSD) model. Higher order models such as solving the Euleur or the Navier-Stokes equations represent more accurately the physical phenomenon, but given the number of equations to be solved, they require a too large computing time to be used during a preliminary stage of design. The full potential equation (FP) combined with a boundary layer model, is able to reproduce the phenomena of shocks and gives a pressure field relatively precise with a sizeable computing time. This single equation is a very great simplification of the five equations of Euleur (three-dimensional field) and gives practically identical results for subsonic flows and transonic flows without separation. Over the last decade, considerable effort has been devoted to developing computational methods for modeling unsteady viscous flows. Although such investigations are very useful for gaining more physical accuracy they can become very prohibitive for routine parametric calculations. The major advantage of the simpler model using FP approach over those based on Euler and N-S formulations is the large reduction in computational cost requirements making them suitable for the preliminary design stage. For this reason the numerical method used for fast computational aeroelasticity is based on the resolution of the full potential equation. Our objective is to develop a fast and accurate tool for computing the aeroelastic behavior for a given wing structure. The main technical features of this approach are : 1. Flow solver : Unsteady full potential equation, combined with a boundary layer model, solved using an implicit time-accurate scheme and a finite difference space discretization. Viscous-inviscid interaction equation is performed by coupling a boundary-layer scheme with the inviscid code using algebraic turbulence model ; 2. Structure solver : The structure represented as a wing box model is discretized using a finite element model for linear elasticity. In the first stage of the project, modal analysis is performed. The modal extraction is achieved by subspace iteration. We use the modal superposition method with a Newmark's time integration scheme for aeroelastic response at each fluid time step. In the second stage, the structure is solved at each fluid time step with a finite element code; 3. Fluid-structure data exchange : A module is integra-ted in order to perform the task of load transfer from the fluid to the structure and to exchange the structure motion to the fluid; 4. Aeroelastic sensitivity : Gradientbased (sometimes referred to as first-order) methods will be used.
机译:在飞机机翼设计的第一阶段,与气流包围的结构相关的几个参数的变化要求对空气弹性进行数值模拟,这通常需要很长的计算时间。空气弹性可以定义为对柔性结构上的空气动力,惯性力和弹性力之间相互作用的研究。有几种控制跨音速流动的数学模型。但是,某些应用具有局限性,例如线性可压缩势方程的解或小跨音速扰动(TSD)模型的解。诸如求解Euleur方程或Navier-Stokes方程之类的高阶模型可以更准确地表示物理现象,但是鉴于要求解的方程数,它们需要太大的计算时间才能在设计的初期阶段使用。完整的势方程(FP)与边界层模型相结合,能够重现冲击现象,并在相当长的计算时间内提供相对精确的压力场。这个单一方程式极大地简化了欧拉方程(三维场)的五个方程式,并为亚音速流和跨音速流提供了几乎相同的结果而没有分离。在过去的十年中,已经投入了大量的精力来开发用于对不稳定粘性流进行建模的计算方法。尽管这样的研究对于获得更高的物理精度非常有用,但对于常规的参数计算却可能变得非常不利。与基于Euler和N-S公式的模型相比,使用FP方法的简单模型的主要优点是大大降低了计算成本要求,使其适合于初步设计阶段。因此,用于快速计算气动弹性的数值方法是基于全势方程的分辨率的。我们的目标是开发一种快速准确的工具来计算给定机翼结构的空气弹性行为。这种方法的主要技术特征是:1.流量求解器:不稳​​定的全势方程,结合边界层模型,使用隐式时间精确方案和有限差分空间离散法求解。通过使用代数湍流模型将边界层方案与无粘性代码耦合来执行粘性-无粘性相互作用方程; 2.结构求解器:使用线性弹性有限元模型离散化表示为机翼盒模型的结构。在项目的第一阶段,进行模态分析。模态提取是通过子空间迭代实现的。我们将模态叠加方法与Newmark的时间积分方案一起使用,以在每个流体时间步长进行气动弹性响应。在第二阶段,在每个流体时间步骤中使用有限元代码求解结构。 3.流体结构数据交换:集成了一个模块,以执行从流体到结构的载荷传递任务,并将结构运动转换为流体。 4.空气弹性敏感性:将使用基于梯度的方法(有时称为一阶方法)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号