【24h】

A SYNTHETIC REGULON ENHANCES THE FITNESS OF YEAST ON NON-NATIVE NUTRIENTS

机译:合成规则增强酵母对非天然营养素的适应性

获取原文
获取原文并翻译 | 示例

摘要

Metabolic engineering has enabled production of bio-based chemicals in organisms, usually by overexpressing the genes (heterologous or native genes) involved in the biochemical pathway to debottleneck rate limiting steps. Recent studies have shown that engineered regulatory systems, such as removing feedback inhibition, can further improve the performance of engineered strains. We hypothesize that engineering a global regulatory system (regulon) could provide a new paradigm in engineering biological systems and complement current tools available for metabolic engineering. To demonstrate this, we use the assimilation of xylose by S. cerevisiae as a test case. Xylose is a non-native sugar to this yeast, but an abundant natural sugar. Currently, engineering xylose assimilation for biomass or ethanol production in S. cerevisiae has been limited to overexpression of initial genes in the pathway to convert xylose to xylulose-5-phosphate followed by expression of non-oxidative Pentose Phosphate Pathway genes to increase the flux towards glycolysis. However, growth involves coordinated control of multiple pathways involving carbon metabolism, cofactor regeneration, amino acid synthesis, nucleotide synthesis, cell cycle maintenance etc., and debottlenecking rate-limiting reactions in all of the necessary pathways required for growth in xylose would involve extensive pathway engineering. To get around this, we hypothesized that further enhancement in xylose utilization can be made by addressing the issue from a regulatory perspective rather than metabolic. To that end, we decided on a regulon engineering strategy whereby a sugar sensing regulon can be engineered to trigger transcriptional machinery when xylose is encountered thereby enhancing the growth and biocatalytic fitness in this non-native sugar. Previous studies have shown that presence of xylose weakly upregulates galactose catabolic genes (GAL). This suggested that xylose can mimic galactose as an agonist of the GAL regulon, and that this system could serve as a platform to develop a xylose-dependent regulatory system. We first engineered the signal transduction step that increases the sensitivity and response kinetics of the GAL regulon for xylose as well as its native ligand, galactose. We further show that by switching ON the regulon using a dual positive feedback loop system we could achieve growth rates comparable to current evolutionary engineered strains. In this process, we also enhanced the galactose sensing capabilities of the sensor, thereby achieving higher growth rates on galactose than the wild type strains. Finally, we also show that under non-inducing conditions, strains carrying the xylose regulon show better growth fitness than strains with constitutive expression of xylose metabolic genes. Further increase in growth rates, xylose uptake, and specific chemical (including biofuels) production can be achieved by expanding the genes under the synthetic xylose regulon. Figure 1: Schematic of xylose sensing and metabolic system in S. cerevisiae. (A) Conventional approaches to xylose metabolic engineering do not enable S. cerevisiae to sense xylose as a nutrient, resulting in pathways required for growth not completely turned ON and remain in the same state as when xylose is not present. (B) Our approach of regulatory engineering aims at activating the GAL regulon through xylose, resulting in turning ON of the necessary pathways for growth.
机译:代谢工程通常通过过表达涉及去瓶颈限速步骤的生化途径中涉及的基因(异源或天然基因)来实现生物体中生物基化学品的生产。最近的研究表明,工程化的调节系统,例如消除反馈抑制,可以进一步改善工程化菌株的性能。我们假设设计全球监管系统(regulon)可以在生物工程系统中提供新的范例,并补充当前可用于代谢工程的工具。为了证明这一点,我们使用酿酒酵母对木糖的同化作为测试用例。木糖是该酵母的非天然糖,但是丰富的天然糖。目前,用于酿酒酵母中生物质或乙醇生产的工程木糖同化仅限于途径中初始基因的过表达,以将木糖转化为5磷酸木酮糖,然后表达非氧化性磷酸戊糖途径途径基因以增加通向糖酵解。但是,生长涉及多种途径的协调控制,这些途径涉及碳代谢,辅因子再生,氨基酸合成,核苷酸合成,细胞周期维持等,而木糖生长所需的所有必要途径中的瓶颈抑制速率限制反应将涉及广泛的途径。工程。为了解决这个问题,我们假设可以通过从监管的角度而不是从代谢的角度解决这个问题,从而进一步提高木糖的利用率。为此,我们决定了一种regulon工程策略,通过该策略,可以对糖敏感的regulon进行工程改造,使其在遇到木糖时触发转录机制,从而增强这种非天然糖的生长和生物催化适应性。先前的研究表明,木糖的存在弱上调半乳糖分解代谢基因(GAL)。这表明木糖可以模拟半乳糖作为GAL调节剂的激动剂,并且该系统可以作为开发木糖依赖性调节系统的平台。我们首先设计了信号转导步骤,该步骤可提高GAL regulon对木糖及其天然配体半乳糖的敏感性和响应动力学。我们进一步表明,通过使用双正反馈环路系统接通调节剂,我们可以获得与当前进化工程菌株相当的生长速率。在此过程中,我们还增强了传感器的半乳糖感测能力,从而在半乳糖上实现了比野生型菌株更高的生长速率。最后,我们还表明,在非诱导条件下,携带木糖调节子的菌株比具有木糖代谢基因组成型表达的菌株表现出更好的生长适应性。通过扩展合成木糖调节剂下的基因,可以进一步提高生长速度,吸收木糖和生产特定的化学物质(包括生物燃料)。图1:酿酒酵母中的木糖感测和代谢系统示意图。 (A)传统的木糖代谢工程方法不能使酿酒酵母将木糖作为一种营养物,从而导致生长所需的途径没有完全打开,并保持与不存在木糖时相同的状态。 (B)我们的监管工程方法旨在通过木糖激活GAL regulon,从而开启必要的生长途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号