首页> 外文会议>xEV battery technology, application amp; market 2019 >Component Development Towards Ultra-Fast Chargeable Lithium Ion Battery Using High Voltage Materials
【24h】

Component Development Towards Ultra-Fast Chargeable Lithium Ion Battery Using High Voltage Materials

机译:使用高压材料的超快充电锂离子电池组件开发

获取原文
获取原文并翻译 | 示例

摘要

In modern society, portable consumer electronics and e-mobility show an increasing market demand, which catches rising attention to one of the key components, the battery, as well. After several years of continuous enhancement, lithium ion batteries (LIBs) are the technology of choice to store electrochemical energy in many applications, in which the cell chemistry is customized according to the demands of the device. For example, fast charging is considered as an undeniable need for the mainstream adoption of LIBs in the area of e-mobility. Today's state-of-the-art LIBs typically use graphite (or graphite/silicon composite materials) as anode material, which has an equilibrium potential at ≈100 mV vs. Li/Li+. Large anode polarization at either high rate or low operating temperature can push graphite potential below the threshold for lithium plating, causing detrimental consequences, such as drastic capacity loss and severe safety hazards. One approach to counter these issues is the use of an alternative anode material such as LTO (Li5Ti4O12). Operating at a working potential of ≈1.55 V vs. Li/Li+, its implementation warrants the inhibition of metallic lithium plating even at low operating temperatures. Despite the undeniable advantages of LTO, its elevated working potential has an adverse effect on the energy density of the resulting battery. For example, a LTO-NMC (Li(NiCoMn)O2) based commercial battery presents an energy density of only 90 Wh/kg. The utilization of cathode active materials bearing a high working potential is one possibility in order to increase the energy density of LTO based batteries. For this, the high voltage spinel LNMO (LiNi0.5Mn1.5O4) with its operating potential of ≈4.7 V vs. Li/Li+ is a prominent candidate. However, there are two main challenges that have to be solved. On the one hand, LNMO operates outside of the theoretical electrochemical stability window of electrolytes based on organic carbonates and on the other hand, LTO suffers from gas formation. Consequently, all electrolyte and electrode components have to be adjusted towards this new and demanding cell chemistry. In this context, we present our latest results on performance determining characteristics of the electrolyte, the composite electrode and its active material, as well as the development of suitable separators. A particular focus was set on the particle size and conductivity of the active materials, electrical conductivity of the composite electrodes, diffusion length of the electrolyte inside the electrode, low resistivity and thickness of the separator, ion conductivity as well as electrochemical and chemical compatibility of the electrolyte in order to achieve a long-lasting battery with ultra-fast charging capability. Consequently, the electrode thickness is determined as a limiting factor for high power electrodes, next to the intrinsic properties of the active material, which can be countered by either doping or coating approaches. Furthermore, the ionic conductivity of the electrolyte is directly correlated to the charge-rate performance of the battery. In addition, electrolyte additives are identified in order to decrease the gassing issue on LTO-active material at elevated temperatures, prolonging the cycle life in LTO|LNMO-based batteries.
机译:在现代社会中,便携式消费电子产品和电动汽车显示出越来越高的市场需求,这也越来越引起人们对关键组件之一即电池的关注。经过几年的不断增强,锂离子电池(LIB)是在许多应用中存储电化学能量的首选技术,其中,根据设备的要求定制电池化学成分。例如,快速充电被认为是电动汽车领域主流采用LIB的不可否认的需求。当今最先进的LIB通常使用石墨(或石墨/硅复合材料)作为阳极材料,与Li / Li +相比在约100 mV处具有平衡电势。在高速率或低工作温度下大的阳极极化都可能使石墨电势低于镀锂的阈值,从而造成有害后果,例如容量急剧下降和严重的安全隐患。解决这些问题的一种方法是使用替代阳极材料,例如LTO(Li5Ti4O12)。与Li / Li +相比,工作电压为≈1.55V,即使在较低的工作温度下,也可以抑制金属锂电镀。尽管LTO具有不可否认的优势,但其较高的工作电势会对所得电池的能量密度产生不利影响。例如,基于LTO-NMC(Li(NiCoMn)O2)的商用电池的能量密度仅为90 Wh / kg。为了提高基于LTO的电池的能量密度,利用具有高工作电位的阴极活性材料是一种可能性。为此,相对于Li / Li +的工作电势约为4.7 V的高压尖晶石LNMO(LiNi0.5Mn1.5O4)是一个突出的候选对象。但是,有两个主要挑战必须解决。一方面,LNMO在基于有机碳酸盐的电解质的理论电化学稳定性范围之外运行,另一方面,LTO会形成气体。因此,必须针对这种新的和苛刻的电池化学对所有电解质和电极成分进行调整。在此背景下,我们介绍了有关电解质,复合电极及其活性材料的性能确定特性以及合适隔板的开发的最新结果。特别关注的是活性材料的粒径和电导率,复合电极的电导率,电极内部电解质的扩散长度,隔板的低电阻率和厚度,离子电导率以及电极的电化学和化学相容性电解质,以实现具有超快充电能力的长效电池。因此,电极厚度被确定为高功率电极的限制因素,仅次于活性材料的固有特性,这可以通过掺杂或涂覆方法来抵消。此外,电解质的离子电导率与电池的充电速率性能直接相关。另外,为了减少在高温下LTO活性材料上的放气问题,延长了LTO | LNMO基电池的循环寿命,鉴定了电解质添加剂。

著录项

  • 来源
  • 会议地点 Strasbourg(FR)
  • 作者单位

    University of Muenster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany;

    Fraunhofer Institute for Silicon Technology ISIT, Battery Systems for Special Applications, Fraunhoferstrasse 1, Itzehoe, D-25524 Germany;

    Fraunhofer Institute for Silicon Technology ISIT, Battery Systems for Special Applications, Fraunhoferstrasse 1, Itzehoe, D-25524 Germany;

    Johnson Matthey Battery Materials GmbH, Ostenriederstrasse 15, Moosburg, D-85368 Germany;

    Freudenberg Performance Materials SE Co. KG, Hoehnerweg 2-4, Weinheim, D-69469 Germany;

    Freudenberg Performance Materials SE Co. KG, Hoehnerweg 2-4, Weinheim, D-69469 Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号