首页> 外文会议>xEV battery technology, application amp; market 2019 >Extended Application of the Couette-Taylor Flow for the Continuous Synthesis of Spherical Shaped Ni-Rich Cathode Materials for Lithium Ion Batteries
【24h】

Extended Application of the Couette-Taylor Flow for the Continuous Synthesis of Spherical Shaped Ni-Rich Cathode Materials for Lithium Ion Batteries

机译:Couette-Taylor流体在连续合成球形锂离子电池用富镍正极材料中的扩展应用

获取原文
获取原文并翻译 | 示例

摘要

The electrochemical performance of transition metal oxide (NCM)-based cathodes depends strongly on the physical properties of the applied materials. Recently, an increase of capacity was achieved through the optimization of the chemical composition, leading to the development of Ni-rich layered oxide cathode materials. However, the poor rate capability and capacity retention as well as the high first cycle irreversible capacity loss (ICL) and the low volumetric energy density have to be improved by specific design of the particle shape. The realization of a spherical morphology with a narrow size distribution is the preferred particle shape and can only be synthesized during the co-precipitation of transition metal hydroxides or carbonates by a continuously stirred tank reactor (CSTR). The CSTR-process allows a further improvement of the cathode materials during the synthesis of core-shell and full concentration-gradient particles. Here, we present the design and the operating principle of a novel Couette-Taylor-Flow-Reactor (CTFR) that offers a continuous process for the synthesis of spherical shaped transition metal hydroxide particles as precursors for cathode materials for lithium ion batteries. The CTFR is composed of two co-axial arranged cylinders which have a small gap and a low working volume between the cylinders. The rotational motion of the inner cylinder induces a turbulent Taylor-vortex flow. Above the critical Taylor number (Ta), a periodic and stable turbulent fluid motion is formed which increases the fluid shear and promotes the agglomeration of precipitates to uniform spherical particles with narrow particle size distribution. The unique operating principle of the CTFR is studied by the co-precipitation of spherical Ni-rich transition metal hydroxides. Here, we investigate the influence of rotation speed, mean residence time, temperature and pH value on the growth behavior of the particles. The morphology, particle size distribution, tap density and chemical composition of the Ni-rich precursors and lithiated cathode materials are investigated. The electrochemical properties of the corresponding cathode materials with their unique particle morphology in dependence of the co-precipitation conditions are evaluated.
机译:基于过渡金属氧化物(NCM)的阴极的电化学性能在很大程度上取决于所应用材料的物理性能。最近,通过优化化学组成实现了容量的增加,从而导致了富镍层状氧化物阴极材料的开发。然而,不良的速率能力和容量保持性以及高的第一循环不可逆容量损失(ICL)和低的体积能量密度必须通过颗粒形状的特定设计来改善。具有窄尺寸分布的球形形态的实现是优选的颗粒形状,并且只能在通过连续搅拌釜反应器(CSTR)共沉淀过渡金属氢氧化物或碳酸盐的过程中合成。 CSTR工艺允许在核-壳和全浓度梯度颗粒的合成过程中进一步改进阴极材料。在这里,我们介绍了新型Couette-Taylor流动反应器(CTFR)的设计和工作原理,该反应器为合成球形过渡金属氢氧化物颗粒(作为锂离子电池正极材料的前体)提供了连续的过程。 CTFR由两个同轴布置的圆柱体组成,两个圆柱体之间的间隙很小且工作空间较小。内筒的旋转运动引起湍流泰勒涡流。高于临界泰勒数(Ta),会形成周期性且稳定的湍流运动,这会增加流体剪切力,并促进沉淀物的团聚,形成粒径分布狭窄的均匀球形颗粒。 CTFR的独特工作原理是通过球形富Ni过渡金属氢氧化物的共沉淀来研究的。在这里,我们研究了转速,平均停留时间,温度和pH值对颗粒生长行为的影响。研究了富镍前体和锂化阴极材料的形貌,粒度分布,振实密度和化学成分。评估了相应的阴极材料的电化学性能,这些材料的独特颗粒形态取决于共沉淀条件。

著录项

  • 来源
  • 会议地点 Strasbourg(FR)
  • 作者单位

    University of Muenster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany;

    University of Muenster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany;

    University of Muenster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany;

    University of Muenster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany,Helmholtz-Institute Muenster, (HI MS), IEK-12, Forschungszentrum Juelich GmbH, Institute of Energy and Climate Research, Corrensstrasse 46, Muenster, D-48149 Germany;

    University of Muenster, MEET Battery Research Center, Corrensstrasse 46, Muenster, D-48149 Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号