首页> 外文会议>Advanced automotive battery conference;Global battery raw materials symposium >High-Power Solid State Batteries with Silica-Gel Solid Nanocomposite Electrolytes Using FSI-Based Ionic Liquids
【24h】

High-Power Solid State Batteries with Silica-Gel Solid Nanocomposite Electrolytes Using FSI-Based Ionic Liquids

机译:使用基于FSI的离子液体的硅凝胶固体纳米复合电解质大功率固态电池

获取原文
获取原文并翻译 | 示例

摘要

All-solid-state batteries are considered as one of the most promising power sources for electrical vehicles (EVs). To meet the demand of EVs, the development of a solid-state Li battery with high-capacity and high-power is required. The nanocomposite electrolyte composed of an ionic liquid, Li-salt and porous-inorganic material can be an option for the solid electrolyte material. We have demonstrated a high-rate performance in solid-state lithium batteries using a silica-gel solid nanocomposite electrolytes (nano-SCE) containing FSI-based ionic liquid. The nano-SCE made with EMI-FSI and Li-FSI confined in the mesoporous silica matrix exhibits an ionic conductivity of 6.2 mS/cm at room temperature. The capacity of the Li-LiFePO4 (LFP) cell using EMI-FSI based nano-SCE reached to 150 mAh/g at 0.1 C, which is higher than that of the other reported batteries composed of ionic liquids, Li-salts and porous-SiO2. The C-rate performance was comparable to that of cells with conventional LiPF6 electrolyte solution. Our results show that impregnation of liquid precursor is an efficient approach to make a good contact between electrode and electrolyte interface in the solid composite electrode as the reaction kinetics at the interface of the active mass and nano-SCE was sufficiently fast. This is a strong advantage compared to the other types of solid electrolytes.
机译:全固态电池被认为是电动汽车(EV)最有前途的电源之一。为了满足电动汽车的需求,需要开发具有高容量和高功率的固态锂电池。由离子液体,锂盐和多孔无机材料组成的纳米复合电解质可以作为固体电解质材料的一种选择。我们已经证明了使用包含FSI基离子液体的硅胶固体纳米复合电解质(nano-SCE)在固态锂电池中的高速率性能。由EMI-FSI和Li-FSI制成的纳米SCE限制在介孔二氧化硅基质中,室温下的离子电导率为6.2 mS / cm。使用基于EMI-FSI的纳米SCE的Li-LiFePO4(LFP)电池在0.1 C时的容量达到150 mAh / g,高于其他报道的由离子液体,锂盐和多孔锂离子电池组成的电池的容量。 SiO2。 C速率性能与使用传统LiPF6电解质溶液的电池相当。我们的结果表明,液体前体的浸渍是在固体复合电极中的电极与电解质界面之间实现良好接触的有效方法,因为活性物质与纳米SCE界面的反应动力学足够快。与其他类型的固体电解质相比,这是一个强大的优势。

著录项

  • 来源
  • 会议地点 Strasbourg(FR)
  • 作者单位

    Panasonic Corporation, Technology Innovation Division, 1006, Kadoma, Kadoma City, Osaka, 571-8508 Japan;

    Panasonic Corporation, Technology Innovation Division, 1006, Kadoma, Kadoma City, Osaka, 571-8508 Japan,imec, Kapeldreef 75, Leuven, B-3001 Belgium;

    imec, Kapeldreef 75, Leuven, B-3001 Belgium;

    imec, Kapeldreef 75, Leuven, B-3001 Belgium;

    Panasonic Corporation, Technology Innovation Division, 1006, Kadoma, Kadoma City, Osaka, 571-8508 Japan;

    imec, Kapeldreef 75, Leuven, B-3001 Belgium;

    Panasonic Corporation, Technology Innovation Division, 1006, Kadoma, Kadoma City, Osaka, 571-8508 Japan;

    Panasonic Corporation, Technology Innovation Division, 1006, Kadoma, Kadoma City, Osaka, 571-8508 Japan;

    Panasonic Corporation, Technology Innovation Division, 1006, Kadoma, Kadoma City, Osaka, 571-8508 Japan;

    imec, Kapeldreef 75, Leuven, B-3001 Belgium,KU Leuven, Centre for Surface Chemistry and Catalysis, M2S, Celestijnenlaan 200F, Leuven, B-3001 Belgium;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-26 14:32:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号