【24h】

Simulation for the Design of Next-Generation Global Earth Observing Systems

机译:下一代全球地球观测系统设计的仿真

获取原文
获取原文并翻译 | 示例

摘要

Under a recently-funded NASA Earth Science Technology Office (ESTO) award we are now designing, and will eventually implement, a sensor web architecture that couples future Earth observing systems with atmospheric, chemical, and oceanographic models and data assimilation systems. The end product will be a "sensor web simulator" (SWS), based upon the proposed architecture, that would objectively quantify the scientific return of a fully functional model-driven meteorological sensor web. Our proposed work is based upon two previously-funded ESTO studies that have yielded a sensor web-based 2025 weather observing system architecture, and a preliminary SWS software architecture that had been funded by NASA's Revolutionary Aerospace Systems Concept (RASC) and other technology awards. Sensor Web observing systems have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable meteorological features and events. A revolutionary architectural characteristic that could substantially reduce meteorological forecast uncertainty is the use of targeted observations guided by advanced analytical techniques (e.g., prediction of ensemble variance). Simulation is essential: investing in the design and implementation of such a complex observing system would be very costly and almost certainly involve significant risk. A SWS would provide information systems engineers and Earth scientists with the ability to define and model candidate designs, and to quantitatively measure predictive forecast skill improvements. The SWS will serve as a necessary trade studies tool to: evaluate the impact of selecting different types and quantities of remote sensing and in situ sensors; characterize alternative platform vantage points and measurement modes; and to explore potential rules of interaction between sensors and weather forecast/data assimilation components to reduce model error growth and forecast uncertainty. We will demonstrate key SWS elements using a proposed future lidar wind measurement mission as a use case.
机译:在最近获得资助的美国国家航空航天局地球科学技术办公室(ESTO)奖励下,我们正在设计并最终实现一种传感器网络架构,该架构将未来的地球观测系统与大气,化学和海洋学模型以及数据同化系统结合在一起。最终产品将是基于提出的体系结构的“传感器网络模拟器”(SWS),它将客观地量化功能齐全的模型驱动的气象传感器网络的科学回报。我们的拟议工作基于两项先前资助的ESTO研究,这些研究得出了基于传感器网络的2025天气观测系统架构,以及由NASA的革命性航空航天系统概念(RASC)和其他技术奖项资助的SWS初步软件架构。传感器Web观测系统有可能显着提高我们监视,理解和预测快速发展的,瞬态的或可变的气象特征和事件的演变的能力。可以大大减少气象预报不确定性的一项革命性的建筑特征是使用由先进分析技术(例如,总体变化预测)指导的有针对性的观测结果。模拟是必不可少的:投资于这样一个复杂的观测系统的设计和实施将非常昂贵,几乎可以肯定会带来巨大的风险。 SWS将为信息系统工程师和地球科学家提供定义和建模候选设计并定量测量预测性预测技能改进的能力。 SWS将作为必要的贸易研究工具,以:评估选择不同类型和数量的遥感和现场传感器的影响;表征替代平台优势点和测量模式;并探索传感器与天气预报/数据同化组件之间相互作用的潜在规则,以减少模型误差的增长和预报的不确定性。我们将使用拟议的未来激光雷达风测量任务作为用例来演示SWS的关键要素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号