首页> 外文会议>ASME Turbo Expo vol.1; 20050606-09; Reno-Tahoe,NV(US) >IMPROVED QUALITY ASSESSMENT FOR TURBINE ENGINE COMPONENTS WITH POTENTIAL APPLICATIONS TO CERAMIC MATRIX COMPOSITE (CMC) MATERIALS
【24h】

IMPROVED QUALITY ASSESSMENT FOR TURBINE ENGINE COMPONENTS WITH POTENTIAL APPLICATIONS TO CERAMIC MATRIX COMPOSITE (CMC) MATERIALS

机译:涡轮发动机组件的质量评估以及在陶瓷基复合材料(CMC)材料中的潜在应用

获取原文
获取原文并翻译 | 示例

摘要

Demand for improved power from turbine engines has resulted in the development of ceramic matrix composite (CMC) materials that can withstand extreme temperature environments and maintain the damage tolerance required for space vehicles and next generation turbine engines. CMC components allow higher temperature operation and increased power over nickel-based superalloy components due to their reduced weight and temperature stability. The use of CMCs allows a potential increase in turbine engine temperatures to above 1400℃. This temperature increase results in improved performance, which translates into increased efficiency, better power to weight ratios, and improved reliability with both significant fuel savings and reduced life cycle costs. Evaluating CMC component quality is difficult due to variations in the fiber/matrix properties and variations in fabrication related parameters. Further, there is limited information on operational and remaining life characteristics. These factors produce significant challenges to existing inspection methods. Determining the reliability of CMC components is a complex process and requires an understanding of both manufacturing variability and damage effects that can occur throughout the life of the component. Consequently, a nondestructive inspection capability is required that can reliably evaluate CMC components during manufacturing, provide acceptance/rejection criteria for determining "fitness for use" and be useful for assessing operational damage effects. New nondestructive testing capabilities, Photon Induced Positron Annihilation (PIPA) and Distributed Source Positron Annihilation (DSPA), have demonstrated the potential ability to detect and quantify fabrication flaws and manufacturing quality for metallic, composite and ceramic components that are used to improve performance and power to weight ratios in high temperature turbine engine applications.
机译:涡轮发动机对提高动力的需求导致了陶瓷基复合材料(CMC)材料的开发,该材料可承受极端温度环境并保持航天器和下一代涡轮发动机所需的损伤容限。由于CMC组件减轻了重量并降低了温度稳定性,因此它们比镍基高温合金组件具有更高的工作温度和更高的功率。使用CMC可使涡轮发动机温度潜在升高到1400℃以上。温度的升高导致性能的改善,这转化为效率的提高,功率重量比的改善以及可靠性的提高,同时显着节省了燃料并降低了生命周期成本。由于纤维/基质特性的变化以及与制造相关的参数的变化,因此难以评估CMC组件的质量。此外,关于工作寿命和剩余寿命特性的信息有限。这些因素对现有的检查方法提出了重大挑战。确定CMC组件的可靠性是一个复杂的过程,需要了解在组件的整个生命周期中可能发生的制造变异性和损坏影响。因此,需要一种非破坏性的检查能力,该能力必须能够在制造过程中可靠地评估CMC组件,提供用于确定“使用适合性”的接受/拒绝标准,并且对于评估操作损坏效果很有用。光子感应正电子An灭(PIPA)和分布式源正电子An灭(DSPA)等新的无损测试功能证明了潜在的能力,可以检测和量化金属,复合材料和陶瓷组件的制造缺陷和制造质量,从而改善性能和功率与高温涡轮发动机应用中的重量比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号