首页> 外文会议>ASME summer heat transfer conference 2008 >TIP LEAKAGE FLOW AND HEAT TRANSFER CHARACTERISTICS ON ROTOR CASING AND BLADE TIP IN AN AXIAL GAS TURBINE ENGINE: STEADY ANALYSIS
【24h】

TIP LEAKAGE FLOW AND HEAT TRANSFER CHARACTERISTICS ON ROTOR CASING AND BLADE TIP IN AN AXIAL GAS TURBINE ENGINE: STEADY ANALYSIS

机译:轴流式燃气轮机转子套和叶片端部的泄漏流及传热特性:稳态分析

获取原文
获取原文并翻译 | 示例

摘要

Steady simulations have been performed to investigate tip leakage flow and heat transfer characteristics on the casing and rotor blade tip in a single stage turbine engine. A turbine stage of stator and rotor was modeled with a pressure ratio of 3.2. The predicted isentropic Mach number and adiabatic wall temperature on the casing showed good agreement with available experimental data. The effects of tip clearance height and rotor rotational speed on the blade tip and casing heat transfer characteristics are mainly considered. It is observed that the tip leakage flow structure is highly dependent on the height of the tip gap as well as speeds of the rotor blade. In all cases, flow separates just around the corner of the pressure side of the blade tip. The region of recirculating flow increases with the increase of the clearance height. Then the flow reattaches on the tip surface near the suction side beyond the flow separation. This flow reattachment enhances surface heat transfer. The leakage flow interaction with the reverse cross flow, induced by relative casing motion, is found to have significant effect on the blade tip and casing heat transfer distribution. Critical region of high heat transfer on the casing exists near the blade tip leading edge and along the pressure side edge at all clearance height. Whereas, at high speed rotation, it tends to move towards the trailing edge due to the change of inflow angle.
机译:已经进行了稳定的模拟,以研究单级涡轮发动机的机壳和转子叶片末梢的末梢泄漏流和传热特性。定子和转子的涡轮级以3.2的压力比建模。套管的预计等熵马赫数和绝热壁温与可用的实验数据显示出良好的一致性。主要考虑叶尖间隙高度和转子转速对叶片叶尖和壳体传热特性的影响。观察到,尖端泄漏流动结构高度依赖于尖端间隙的高度以及转子叶片的速度。在所有情况下,流都在叶片尖端压力侧的拐角处分开。循环流的区域随间隙高度的增加而增加。然后,流超过吸力分离而重新附着在吸力侧附近的尖端表面上。这种流动的重新附着增强了表面的热传递。发现由相对的壳体运动引起的泄漏流与反向横流的相互作用对叶片尖端和壳体的热传递分布具有显着影响。机壳上高传热的关键区域存在于叶片尖端前缘附近,并且在所有间隙高度都沿着压力侧边缘存在。而在高速旋转时,由于流入角度的变化,它倾向于朝后缘移动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号