【24h】

MODELLING THE TEARING CRACK GROWTH IN A DUCTILE FERRITIC STEEL USING X-FEM ELEMENTS

机译:使用X有限元模拟球墨铸铁中的撕裂裂纹增长

获取原文
获取原文并翻译 | 示例

摘要

eXtended Finite Element Method (X-FEM) is used to model a cracked structure without meshing explicitly the crack. Indeed, the crack is represented by a discontinuity of the displacement field through additional degrees of freedom using Heaviside type function or derived from the Irwin's singular fields. Initially, the stress integration in the XFEM framework supposed to divide the cut elements into subtriangles that are conform to the crack. This was motivated in order to integrate the behaviour accurately on both sides of the crack in particular at proximity of the crack tip where singular enrichments are present. This strategy induces field projections from the usual Gauss point configuration to a variable new one that depends on the crack position in the element. For ductile fracture modelization, this approach is not applicable, because in presence of large scale yield, the projection of internal variable fields is not conservative, in particular at proximity of the crack tip. In order to circumvent this problem, a new integration strategy was proposed by B. Prabel. It consists in using 64 Gauss points that are placed without regards to the crack position. This simple integration scheme permits to take implicitly into account the crack position and the fields in the element in an accurate and consistent way. This strategy was used in problem calculation for which the plastic radius remained small. It allowed introducing the overintegrated elements in the probable propagation zone, just before plastification. In the case of ductile tearing, the plasticity is not confined near the crack tip and an improvement of the proposed strategy is made. This is then used to model large ductile crack growth in a ductile ferritic steel. To validate the predictions, the modelization is compared to a second F.E. calculation using the node release technique for the crack propagation. It is then shown that the two predictions are strictly equivalents
机译:扩展有限元方法(X-FEM)用于对裂缝结构进行建模,而无需明确地对裂缝进行网格化。实际上,裂纹是通过使用Heaviside类型函数通过附加自由度或从Irwin奇异场得出的位移场的不连续性来表示的。最初,XFEM框架中的应力整合旨在将切割元素划分为与裂纹相符的子三角形。这是为了使行为准确地整合在裂纹的两侧,特别是在存在奇异富集的裂纹尖端附近。这种策略将场投影从通常的高斯点配置引诱到一个可变的新投影,该新投影取决于元素在裂缝中的位置。对于延性断裂建模,该方法不适用,因为在大规模屈服的情况下,内部变量场的投影并不保守,尤其是在裂纹尖端附近。为了避免这个问题,B。Prabel提出了一种新的整合策略。它包括使用64个高斯点,这些点的放置与裂纹位置无关。这种简单的集成方案允许以精确一致的方式隐式考虑裂纹位置和元素中的场。在塑性半径保持较小的问题计算中使用了该策略。在塑化之前,它允许将过度整合的元素引入可能的繁殖区。在韧性撕裂的情况下,塑性不限于裂纹尖端附近,并且对所提出的策略进行了改进。然后将其用于模拟球墨铸铁中大的球裂纹扩展。为了验证预测结果,将模型化与使用节点释放技术进行裂纹扩展的第二F.E.计算进行了比较。然后表明,这两个预测是严格等价的

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号