首页> 外文会议>ASME international design engineering technical conferences and computers and information in engineering conference 2008 >A LEAST-SQUARES FINITE ELEMENT FORMULATION FOR INVERSE DETECTION OF UNKNOWN BOUNDARY CONDITIONS IN STEADY HEAT CONDUCTION
【24h】

A LEAST-SQUARES FINITE ELEMENT FORMULATION FOR INVERSE DETECTION OF UNKNOWN BOUNDARY CONDITIONS IN STEADY HEAT CONDUCTION

机译:稳态传热中未知边界条件逆检测的最小二乘有限元公式

获取原文
获取原文并翻译 | 示例

摘要

A Least Squares Finite Element Method (LSFEM) formulation for the detection of unknown boundary conditions in steady heat conduction is presented. The method is capable of determining temperatures and heat fluxes in locations where such quantities are unknown provided such quantities are sufficiently overspecified in other locations. In several finite element and boundary element inverse implementations, the resulting system of equations becomes become rectangular if the number of over-specified conditions exceeds the number of unknown conditions. In the case of the finite element method, these rectangular matrices are sparse and can be difficult to solve efficiently. Often we must resort to the use of direct factorizations that require large amounts of core memory for realistic geometries. This difficulty has prevented the solution of large-scale inverse problems that require fine meshes to resolve complex 3-D geometries and material interfaces. In addition, the Galerkin finite element method (GFEM) does not provide the same level of accuracy for both temperature and heat flux. In this paper, an alternative finite element approach based on LSFEM will be shown. The LSFEM formulation always results in a symmetric positive-definite matrix that can be readily treated with standard sparse matrix solvers. In this approach, the differential equation is cast in first-order form so equal order basis functions can be used for both temperature and heat flux. Enforcement of the overspecified boundary conditions is straightforward in the proposed for-mulation. The methods allows for direct treatment of complex geometries composed of heterogeneous materials.
机译:提出了最小二乘有限元方法(LSFEM)公式,用于检测稳态热传导中的未知边界条件。该方法能够确定在未知量的位置处的温度和热通量,前提是该量在其他位置足够高。在几种有限元和边界元逆实现中,如果过度指定的条件数超过未知条件的数,则所得的方程组将变为矩形。在有限元法的情况下,这些矩形矩阵稀疏并且可能难以有效求解。通常,我们必须求助于直接分解,这需要大量核心内存才能实现实际的几何形状。这种困难阻止了解决大规模逆问题的需要,这些问题需要精细的网格才能解决复杂的3D几何形状和材料界面。此外,Galerkin有限元方法(GFEM)对于温度和热通量均未提供相同水平的精度。本文将介绍一种基于LSFEM的替代有限元方法。 LSFEM公式始终生成对称的正定矩阵,可以使用标准稀疏矩阵求解器轻松对其进行处理。在这种方法中,微分方程以一阶形式转换,因此等阶基函数可用于温度和热通量。在拟议的模拟中,强制执行过度指定的边界条件非常简单。该方法允许直接处理由异质材料组成的复杂几何形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号