【24h】

MIXING ENHANCEMENT IN SIMPLE GEOMETRY MICROCHANNELS

机译:简单几何微通道中的混合增强

获取原文
获取原文并翻译 | 示例

摘要

Many microfluidic applications require the mixing of reagents, but efficient mixing in these laminar (i.e., low Reynolds number) systems is typically difficult. Instead of using complex geometries and/or relatively long channels, we demonstrate the merits of flow rate time dependency through periodic forcing. We illustrate the technique by studying mixing in three different simple channel intersection geometries ("|-", "Y", and "T") by means of computational fluid dynamics (CFD) as well as physically mixing two aqueous reagents. In these geometries, both inlet channel segments (upstream of the confluence) and the outlet channel segment (downstream from the confluence) are 200 μm wide by 120 μm deep, a practical scale for mass-produced disposable devices. The flow rate and average velocity after the confluence of the two reagents are 48 nl s~(-1) and 2 mm s~(-1) respectively, which, for aqueous solutions at room temperature, corresponds to a Reynolds number of 0.3. We use a mass diffusion constant of 10~(-10) m~2 s~(-1), typical of many BioMEMS applications, and vary the flow rates of the reagents such that the inlet time-averaged flow rate remains unchanged but the instantaneous flow rate is sinusoidal (with a DC bias) with respect to time. We analyze the effect of pulsing the flow rate in both inlets at 90 and 180 degrees out of phase in all three geometries. While mixing is good in all six cases, we demonstrate that the best results occur when both inlets are pulsed 90 degrees out of phase in the "T" geometry. In all six cases, the interface is shown to stretch, retain two folds, and sweep through the confluence zone, leading to good mixing within 2 mm downstream of the confluence, i.e. about 1 s of contact. From a practical viewpoint, the case where the inlet pulsing is 180 degrees out of phase is of particular interest as the outflow is constant.
机译:许多微流体应用需要试剂的混合,但是在这些层流(即低雷诺数)系统中的有效混合通常是困难的。代替使用复杂的几何形状和/或相对较长的通道,我们通过周期性强制展示了流速时间依赖性的优点。我们通过计算流体动力学(CFD)研究三种不同的简单通道交叉点几何形状(“ |-”,“ Y”和“ T”)中的混合以及将两种水性试剂进行物理混合来说明该技术。在这些几何形状中,入口通道段(汇合处的上游)和出口通道段(汇合处的下游)均为200μm宽乘120μm深,这是批量生产的一次性设备的实际规模。两种试剂融合后的流速和平均速度分别为48 nl s〜(-1)和2 mm s〜(-1),对于室温下的水溶液,其雷诺数为0.3。我们使用许多BioMEMS应用中典型的10〜(-10)m〜2 s〜(-1)的质量扩散常数,并改变试剂的流速,以使入口时间平均流速保持不变,但瞬时流量相对于时间为正弦曲线(带有直流偏置)。我们分析了在所有这三种几何形状中,两个入口处的脉冲以90度和180度异相脉动的效果。尽管在所有六种情况下混合效果都很好,但我们证明,当两个进气口在“ T”形中异相90度时,都将获得最佳结果。在所有六种情况下,界面均显示伸展,保持两次折叠并扫过汇合区,从而在汇合下游2毫米内(即约1 s接触)实现良好混合。从实践的角度来看,由于流出是恒定的,因此特别需要考虑入口脉冲与相位异相180度的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号