首页> 外文会议>Applied parallel and scientific computing >Using State-of-the-Art Sparse Matrix Optimizations for Accelerating the Performance of Multiphysics Simulations
【24h】

Using State-of-the-Art Sparse Matrix Optimizations for Accelerating the Performance of Multiphysics Simulations

机译:使用最新的稀疏矩阵优化来加速多物理场仿真的性能

获取原文
获取原文并翻译 | 示例

摘要

Multiphysics simulations are at the core of modern Computer Aided Engineering (CAE) allowing the analysis of multiple, simultaneously acting physical phenomena. These simulations often rely on Finite Element Methods (FEM) and the solution of large linear systems which, in turn, end up in multiple calls of the costly Sparse Matrix-Vector Multiplication (SpM×V) kernel. The major-and mostly inherent-performance problem of the this kernel is its very low flop:byte ratio, meaning that the algorithm must retrieve a significant amount of data from the memory hierarchy in order to perform a useful operation. In modern hardware, where the processor speed has far overwhelmed that of the memory subsystem, this characteristic becomes an overkill.
机译:多物理场仿真是现代计算机辅助工程(CAE)的核心,可以分析多个同时作用的物理现象。这些仿真通常依赖于有限元方法(FEM)和大型线性系统的解决方案,而大型线性系统的解决方案又导致多次调用昂贵的稀疏矩阵-矢量乘法(SpM×V)内核。该内核的主要(也是最固有的性能)问题是其flop:byte比率非常低,这意味着该算法必须从内存层次结构中检索大量数据才能执行有用的操作。在处理器速度远远超过内存子系统速度的现代硬件中,此特性变得过分了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号