【24h】

AN APPROACH TO INTEGRATED MULTI-DISCIPLINARY TURBOMACHINERY DESIGN

机译:集成多学科涡轮机械设计方法

获取原文
获取原文并翻译 | 示例

摘要

Aeroengines are designed using fractured processes. Complexity has driven the design of such machines to be subdivided by specialism, customer and function. While this approach has worked well in the past, with component efficiencies, current material performance and the possibilities presented by scaling existing designs for future needs becoming progressively exhausted it is necessary to reverse this process of disintegration. Our research addresses this aim. The strategy we use has two symbiotic arms. The first is an open data architecture from which existing disparate design codes all derive their input and to which all send their output. The second is a dynamic design process management system known as "SignPosting". Both the design codes and parameters are arranged into complementary multiple level hierarchies: fundamental to the successful implementation of our strategy is the robustness of the mechanisms we have developed to ensure consistency in this environment as the design develops over time. One of the key benefits of adopting a hierarchical structure is that it confers not only the ability to use mean-line, throughflow and fully 3D CFD techniques in the same environment but also to cross specialism boundaries and insert mechanical, material, thermal, electrical and structural codes, enabling exploration of the design space for multi-disciplinary non-linear responses to design changes and their exploitation. We present results from trials of an early version of the system applied to the redesign of a generic civil aeroengine core compressor. SignPosting has allowed us to examine the hardness of design constraints across disciplines which has shown that it is far more profitable not to strive for even higher aerodynamic performance, but rather improve the commercial performance by maintaining design and part speed pressure ratios stability and efficiency while increasing rotor blade creep life by up to 70%.
机译:航空发动机是采用断裂工艺设计的。复杂性驱使这类机器的设计按专业,客户和功能细分。尽管这种方法在过去一直很有效,但随着组件效率,当前材料性能以及通过扩展现有设计来满足未来需求而带来的可能性逐渐枯竭,有必要扭转这种分解过程。我们的研究解决了这一目标。我们使用的策略有两个共生臂。第一个是开放的数据体系结构,现有的不同设计代码都从该体系结构中获取输入,并向其发送输出。第二个是动态设计过程管理系统,称为“ SignPosting”。设计代码和参数都安排在互补的多个层次结构中:成功实施我们的策略的基础是我们开发的机制的稳健性,以确保随着设计的不断发展,该环境的一致性。采用分层结构的主要好处之一是,它不仅具有在相同环境中使用均值线,通流和完全3D CFD技术的能力,而且还可以跨越专业界限并插入机械,材料,热,电和机械性能。结构代码,可以探索设计空间,以对设计变更及其开发进行多学科的非线性响应。我们介绍了该系统早期版本的试验结果,该系统适用于重新设计通用民用航空发动机核心压缩机。 SignPosting使我们能够检查跨学科的设计约束的严格性,这表明,不追求更高的空气动力学性能,而是通过保持设计和零件速度压力比的稳定性和效率,同时提高其来提高商业性能,这是更加有利可图的。转子叶片的蠕变寿命高达70%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号