首页> 外文会议>American Society of Mechanical Engineers(ASME) Summer Heat Transfer Conference(HT2005); 20050717-22; San Francisco,CA(UA) >THERMAL DEFORMATION MODELING OF SPACE OPTICAL SYSTEMS WITH VARIABLE COEFFICIENT OF THERMAL EXPANSION
【24h】

THERMAL DEFORMATION MODELING OF SPACE OPTICAL SYSTEMS WITH VARIABLE COEFFICIENT OF THERMAL EXPANSION

机译:具有可变热膨胀系数的空间光学系统的热变形模型

获取原文
获取原文并翻译 | 示例

摘要

In modeling space optical systems, an important property affecting the wave front error is the coefficient of thermal expansion (CTE) of the materials. The change of deformation that an optical element experiences due to thermal loads is proportional to both the CTE and the change in temperature gradient. This deformation affects the performance of the optical system by introducing error in the wave front. The deformation can be reduced in part by using materials with low CTE. Alternatively, using high conductivity materials to minimize temperature gradients through the mirror can also reduce deformation. Usually, a combination of these approaches is used to optimize the performance and meet the requirements of the system. Even with the utmost attention to thermal control, often the temperature gradients cannot be completely avoided. Low CTE materials have been developed to reduce thermal deformation, including ULE (Ultra-low Expansion), Zerodur, and Silicon Carbide. However, the manufacturing process can result in non-uniformities throughout the optics. For optical systems requiring highly precise performance, modeling these non-uniformities becomes important. The non-uniformity in the CTE of a material in effect compounds the deformation in the same manner as introducing additional temperature gradient through the optics. This paper describes the methodology for integrated thermal/mechanical modeling to predict the deformation response of an optical element with assumed CTE variations and thermal disturbances. A mirror with an assumed CTE variation was modeled in a changing thermal environment and using I-DEAS/TMG analysis tools, thermal deformations were predicted. Results show excellent agreement with engineering predictions. Clearly knowing the CTE variation of the material is a critical step for modeling. However, measuring and specifying the material CTE is out of the scope of this paper.
机译:在空间光学系统建模中,影响波前误差的重要属性是材料的热膨胀系数(CTE)。光学元件由于热负荷而经历的变形变化与CTE和温度梯度的变化成正比。这种变形通过在波前引入误差来影响光学系统的性能。使用低CTE的材料可以部分减少变形。或者,使用高电导率的材料来最小化通过反射镜的温度梯度也可以减少变形。通常,这些方法的组合可用于优化性能并满足系统要求。即使最关注热控制,通常也无法完全避免温度梯度。已经开发出低CTE材料来减少热变形,包括ULE(超低膨胀),Zerodur和碳化硅。然而,制造过程会导致整个光学器件的不均匀性。对于需要高度精确性能的光学系统,对这些非均匀性进行建模变得很重要。材料CTE的不均匀实际上会以与通过光学器件引入额外的温度梯度相同的方式加剧变形。本文介绍了用于综合热/机械建模的方法,以预测具有假定的CTE变化和热干扰的光学元件的变形响应。在不断变化的热环境中对具有假定的CTE变化的反射镜进行建模,并使用I-DEAS / TMG分析工具预测热变形。结果表明与工程预测非常吻合。清楚地了解材料的CTE变化是建模的关键步骤。但是,测量和指定材料CTE不在本文讨论范围之内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号