【24h】

PARTICULATE AGGREGATE FORMATION AND WALL ADHESION IN MICROCHANNEL FLOWS

机译:微通道流中的颗粒状聚集体形成和壁粘附

获取原文
获取原文并翻译 | 示例

摘要

A multiple-time step discrete-element approach is presented for efficient computational modeling of the transport, collision and adhesion of small particles in microchannel flows. Adhesive particulates have been identified as a leading cause of failure in many different microfluidic devices, including those currently being developed by different research groups for rapid biological and chemical contaminant sensing, fluid drag reduction, etc. As these microfluidic devices enter into the marketplace and become more extensively used in field conditions, the importance of particle adhesion and clogging will increasingly limit the reliability of such systems. At a larger scale, clogging of vehicle radiators by small adhesive particles is currently a major problem for construction vehicles operating in certain environmental conditions and certain soil types. Cooling system fouling leads to the need for frequent maintenance and machine down time. Dust fouling of equipment is also of concern for potential human occupation on dusty planets, such as Mars. The discrete-element method presented in this paper is developed to enable efficient prediction of aggregate structure and breakup, for prediction of the effect of aggregate formation on the bulk fluid flow, and for prediction of the effects of small-scale flow features (e.g., due to surface roughness or lithographic patterning) on the aggregate formation and particle deposition. We present an overview of the computational structure and modeling assumptions, including models for various forces and torques present during particle-particle collisions. We then utilize the computational method to examine the physical processes involved in aggregate formation and capture of particulate aggregates by walls in microchannel flows.
机译:提出了一种多步离散元素方法,用于微通道流中小颗粒的传输,碰撞和粘附的高效计算模型。在许多不同的微流体设备中,粘合剂微粒已被认为是导致故障的主要原因,其中包括目前由不同研究小组开发的那些微粒,用于快速生物和化学污染物感测,减少流体阻力等。随着这些微流体设备进入市场并逐渐成为市场由于更广泛地用于现场条件,颗粒粘附和堵塞的重要性将越来越多地限制此类系统的可靠性。在较大的规模上,对于某些在某些环境条件和某些土壤类型下运行的工程车辆来说,小的粘合剂颗粒堵塞车辆散热器是当前的主要问题。冷却系统结垢导致需要频繁维护和机器停机时间。设备的粉尘结垢也可能引起人类在尘土飞扬的星球(例如火星)上的占领。本文提出的离散元素方法是为了能够有效预测骨料结构和破碎,预测骨料形成对整体流体流动的影响以及预测小规模流动特征(例如, (由于表面粗糙度或平版印刷图案引起)。我们对计算结构和建模假设进行了概述,包括在粒子与粒子碰撞过程中存在的各种力和转矩的模型。然后,我们利用计算方法来检查参与聚集体形成的物理过程,并通过微通道流中的壁捕获颗粒聚集体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号