【24h】

A NEW UNSTEADY-BASED TURBULENCE MODEL TO PREDICT SHEAR LAYER ROLLUP AND BREAKDOWN

机译:基于非定常的湍流模型预测剪切层的滚动和崩溃

获取原文
获取原文并翻译 | 示例

摘要

This paper documents the computational investigation of the unsteady rollup and breakdown of a turbulent separated shear layer. This complex phenomenon plays a key role in many applications, such as separated flow at the leading edge of an airfoil at off-design conditions; flow through the tip clearance of a rotor in a gas turbine; flow over the front of an automobile or aircraft carrier; and flow through turbulated passages that are used to cool turbine blades. Computationally, this problem poses a significant challenge in the use of traditional RANS-based turbulence models for the prediction of unsteady flows. To demonstrate this point, a series of 2-D and 3-D unsteady simulations have been performed using a variety of well-known turbulence models, including the "realizable" k-e model, a differential Reynolds stress model, and a new model developed by the present authors that contains physics that account for the effects of local unsteadiness on turbulence. All simulations are fully converged and grid independent in the unsteady framework. A proven computational methodology is used that takes care of several important aspects, including high-quality meshes (2.5 million finite volumes for 3-D simulations) and a discretization scheme that will minimize the effects of numerical diffusion. To isolate the shear layer breakdown phenomenon, the well-studied flow over a blunt leading edge (Reynolds number based on plate half-thickness of 26,000) is used for validation. Surprisingly, none of the traditional eddy-viscosity or Reynolds stress models are able to predict an unsteady behavior even with modifications in the near-wall treatment, repeated adaption of the mesh, or by adding small random perturbations to the flow field. The newly developed unsteady-based turbulence model is shown to predict some important features of the shear layer rollup and breakdown.
机译:本文记录了湍流分离剪切层的非稳态累积和破坏的计算研究。这种复杂的现象在许多应用中都起着关键作用,例如在非设计条件下,机翼前缘处的分离气流;流过燃气轮机转子的叶尖间隙;流过汽车或航空母舰的前部;并流过用于冷却涡轮叶片的湍流通道。通过计算,此问题在使用基于RANS的传统湍流模型预测非恒定流方面提出了重大挑战。为了证明这一点,已经使用各种众所周知的湍流模型进行了一系列的2-D和3-D非稳态仿真,包括“可实现的” ke模型,微分雷诺应力模型以及由目前的作者所包含的物理学解释了局部不稳定对湍流的影响。在不稳定的框架中,所有模拟都完全收敛且独立于网格。使用了一种经过验证的计算方法,该方法可以处理多个重要方面,包括高质量的网格物体(用于3D模拟的250万个有限体积)和离散化方案,可以最大程度地减少数值扩散的影响。为了隔离剪切层破裂现象,使用了经过充分研究的钝顶缘上的流(基于26,000的板半厚度的雷诺数)进行验证。出乎意料的是,即使对近壁处理进行了修改,对网格进行了反复调整,或者对流场添加了较小的随机扰动,传统的涡流粘度或雷诺应力模型都无法预测不稳定的行为。展示了新开发的基于非稳态的湍流模型来预测剪切层卷起和破裂的一些重要特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号