【24h】

LIGNITE FUEL ENHANCEMENT

机译:褐煤燃料增强

获取原文

摘要

Project Goal and Objectives Our goal and objective is to significantly enhance the value of lignite as a fuel in electricalgeneration power plants within the next 5 years. Although current lignite power plants aredesigned to burn high-moisture coals (about 40%), a reduction in moisture content of 5 to15 percentage points (about one quarter of the moisture content in the coal) will result insignificant improvements.All fossil steam plants reject large quantities of heat in the cooling water used to condensesteam. Engineering studies at Great River Energy (GRE) Coal Creek Station show thatthis waste heat could be used to lower the moisture content of the coal by at least 10percentage points (or one quarter of the moisture in the coal). Reducing the moisturecontent of the coal will translate into the following benefits for the U.S.:? Increasing the net generating capacity of units that burn high-moisture coal.? Increasing the new energy supply of units that burn high-moisture coal.? Increasing the cost-effectiveness of the nation’s electrical generation industry.? Improving the environment by reducing emissions from coal-fired plants.? Increasing the value of the nation’s lignite reserves.The cost benefits from improved plant performance, reduced emissions, and increasedavailability far out weigh the cost of drying the fuel. This work represents a potentiallandmark advance of fossil-steam plant performance improvement, emissions reductionand plant availability and is also applicable to Powder River Basin sub bituminous andbiomass high moisture fuels as well.Efficiency, Environmental, and Economic Improvements 3Existing technology is such that lignite and PRB power plants mechanically feed the asreceivedcoal into pulverizing mills and then blow it into the combustion chamber. ThisLignite Fuel Enhancement Project proposes to demonstrate coal drying technology whichwill incrementally reduce the moisture content by about 25% (I.e., from about 40% toabout 30%). Analyses and field-testing show that the removal of about one-quarter of thecoal moisture results in:? A substantial (about 5%) improvement in overall performance? About a 25% reduction in mass emissions of SO2 and a 7% reduction in otherpollutants such as CO2 , NOx, ash and mercury ? A conservative savings of about $3M per year for one 546MW unit at Coal CreekStation? A potential economic savings of about $84M per year (15,000 MW of U.S. lignitepower plants)? A potential economic savings of about $840M per year (150,000 MW of U.S. PRBsub bituminous power plants)The economic savings quoted above are believed to be conservative because they do notinclude savings due to increased availability, capacity factor, pre combustion mineralremoval and post combustion emission reductions other than SO2.Applied to 15 GW of lignite generation and 150 GW of PRB coal generation and assuminga future value for carbon at $10/ton (or $2.725/ton of CO2), the proposed coal dryingtechnology offers a total potential saving due to CO2 reduction is nearly $3 billion peryear. Even a modest penetration of the proposed technology into this generation base couldultimately return a very large cost saving due solely to reduction of CO2 emissions.MethodologyThe benefits of reduced-moisture-content lignite will be demonstrated at the GRE CoalCreek Station in Underwood, North Dakota. A phased approach will be used. In the firstphase, a 2T pilot dryer will be tested. Types of dryers (fixed vs. vibratory), segregation ofmaterials, quantify magnetic & air separation benefits, and optimize operational concernsas we scale-up to a 75T/hr prototype. The second phase will be the prototype dryermodule, which will be fully integrated into one of the 546 MW units at the Coal CreekStation. Following successful demonstration of that dryer and the performanceimprovements as a result of it, GRE will design, construct, and perform full-scale longtermoperational testing of a full suite of dryer modules for full operation of the unit onincrementally dried coal, Phase 3. Six will be needed for full load.Sponsoring OrganizationGRE is the principal project sponsor. Other collaborating organizations include FalkirkMining and Couteau Properties, EPRI, Lehigh University, NETL, NDIC, and BarrEngineering.
机译:项目目标和目标我们的目标是在未来5年内显着提高褐煤作为发电厂燃料的价值。尽管目前的褐煤发电厂被设计为燃烧高水分的煤(约40%),但将水分含量降低5至15个百分点(约占煤炭水分的四分之一)将带来微不足道的改善。冷却水中的大量热量用来冷凝蒸汽。大河能源(GRE)煤溪站的工程研究表明,这些废热可用于将煤炭的水分含量降低至少10个百分点(或煤炭水分的四分之一)。减少煤炭的水分含量将为美国带来以下好处:增加燃烧高水分煤的机组的净发电量。增加燃烧高水分煤的单位的新能源供应。提高国家发电行业的成本效益。通过减少燃煤电厂的排放来改善环境。增加国家褐煤储量的价值。改善工厂性能,减少排放和提高利用率带来的成本收益远远超过了干燥燃料的成本。这项工作代表了化石蒸汽工厂性能提高,排放减少和工厂可用性的潜在里程碑式进展,也适用于粉河流域亚沥青和生物质高水分燃料。效率,环境和经济改进3现有技术是褐煤和PRB发电厂以机械方式将接收的煤送入粉碎机,然后将其吹入燃烧室。该褐煤燃料增强项目提议演示煤干燥技术,该技术将使水分含量逐渐降低约25%(即从约40%降至约30%)。分析和现场测试表明,除去约四分之一的煤水分会导致:整体表现是否有实质性改善(约5%)? SO2的质量排放量减少了约25%,CO2,NOx,灰分和汞等其他污染物减少了7%?在Coal CreekStation上,一个546MW机组每年保守地节省约300万美元?每年可能节省约8400万美元的经济成本(美国15,000 MW褐煤发电厂)?每年潜在的经济节省约8.4亿美元(美国PRBsub沥青电厂15万兆瓦)上述经济节省被认为是保守的,因为其中不包括由于可用性,容量系数,燃烧前矿物去除和燃烧后排放增加而节省的成本应用于15 GW褐煤发电和150 GW PRB煤发电,并假设碳的未来价值为$ 10 /吨(或$ 2.725 /吨CO2),则拟议的煤炭干燥技术可通过CO2节省全部能源每年减少近30亿美元。仅仅由于减少了二氧化碳的排放,即使将所提议的技术适度地渗透到该发电基地中,也可以最终节省大量的成本。将采用分阶段的方法。在第一阶段,将测试2T引燃干燥器。当我们扩大到75T / hr原型时,干燥机的类型(固定式与振动式),材料分离,量化磁气分离效果以及优化操作问题。第二阶段将是原型干燥机模块,它将完全集成到Coal CreekStation的546 MW机组之一中。在成功演示了该干燥机及其性能改进之后,GRE将设计,建造和执行全套干燥机模块的长期长期运行测试,以使该机组在逐步干燥的煤上完全运转(第3阶段)。六个将GRE是主要的项目发起人。其他合作组织包括FalkirkMining和Couteau Properties,EPRI,Lehigh University,NETL,NDIC和BarrEngineering。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号