首页> 外文会议>Advances in structures, properties and applications of biological and bioinspired materials >Nanostructured Ceramic and Ceramic-Polymer Composites as Dual Functional Interface for Bioresorbable Metallic Implants
【24h】

Nanostructured Ceramic and Ceramic-Polymer Composites as Dual Functional Interface for Bioresorbable Metallic Implants

机译:纳米结构陶瓷和陶瓷-聚合物复合材料作为生物可吸收金属植入物的双重功能界面

获取原文
获取原文并翻译 | 示例

摘要

Millions of medical implants and devices (e.g., screws, plates, and pins) are used each year worldwide in surgery, and traditionally the components have been limited to permanent metals (e.g., stainless steel, titanium alloys) and polyester-based absorbable polymers. Because of clinical problems associated with these traditional materials, a novel class of biodegradable metallic materials, i.e., magnesium-based alloys, attracted great attention and clinical interests. Magnesium (Mg) is particularly attractive for load-bearing orthopedic applications because it has comparable modulus and strength to cortical bone. Controlling the interface of Mg with the biological environment, however, is the key challenge that currently limits this biodegradable metal for broad applications in medical devices and implants. This paper will particularly focus on creating nanostructured interface between the biodegradable metallic implant and surrounding tissue for the dual purposes of (1) mediating the degradation of the metallic implants and (2) simultaneously enhancing bone tissue regeneration and integration. Nanophase hydroxyapatite (nHA) is an excellent candidate as a coating material due to its osteoconductivity that has been widely reported. Applying nHA coatings or nHA containing composite coatings on Mg alloys is therefore promising in serving the needed dual functions. The composite of nHA and poly(lactic-co-glycolic acid) (PLGA) as a dual functional interface provides additional benefits for medical implant applications. Specifically, the polymer phase promotes interfacial adhesion between the nHA and Mg, and the degradation products of PLGA and Mg neutralize each other. Our results indicate that nHA and nHA/PLGA coatings slow down Mg degradation rate and enhance adhesion of bone marrow stromal cells, thus promising as the next-generation multifunctional implant materials. Further optimization of the coatings and their interfacial properties are still needed to bring them into clinical applications.
机译:全世界每年在外科手术中使用数以百万计的医疗植入物和装置(例如,螺钉,板和销),并且传统上,这些部件仅限于永久金属(例如,不锈钢,钛合金)和聚酯基可吸收聚合物。由于与这些传统材料有关的临床问题,一类新型的可生物降解的金属材料即镁基合金引起了极大的关注和临床兴趣。镁(Mg)在承重的骨科应用中特别有吸引力,因为它具有与皮质骨相当的模量和强度。然而,控制镁与生物环境的界面是当前限制这种可生物降解的金属在医疗设备和植入物中广泛应用的主要挑战。本文将特别着重于在可生物降解的金属植入物和周围组织之间创建纳米结构的界面,其双重目的是(1)介导金属植入物的降解和(2)同时增强骨骼组织的再生和整合。纳米相羟基磷灰石(nHA)由于其骨传导性而被广泛报道,是一种极好的候选涂料。因此,在镁合金上涂覆nHA涂层或含nHA的复合涂层有望满足所需的双重功能。 nHA和聚乳酸-乙醇酸共聚物(PLGA)的复合材料具有双重功能,可为医疗植入物应用带来更多好处。具体地,聚合物相促进nHA和Mg之间的界面粘附,并且PLGA和Mg的降解产物彼此中和。我们的结果表明,nHA和nHA / PLGA涂层减慢了Mg的降解速度并增强了骨髓基质细胞的粘附性,因此有望成为下一代多功能植入材料。仍需要进一步优化涂层及其界面性能,以使其进入临床应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号