首页> 外文会议>Advances in optics for biotechnology, medicine and surgery XV >LIGHTWEIGHT HIGH-DENSITY DIFFUSE OPTICAL TOMOGRAPHY USING sCMOS DETECTION
【24h】

LIGHTWEIGHT HIGH-DENSITY DIFFUSE OPTICAL TOMOGRAPHY USING sCMOS DETECTION

机译:使用sCMOS检测的轻量级高密度漫射层析成像

获取原文
获取原文并翻译 | 示例

摘要

The widespread adoption of optical neuroimaging has been restricted by the tradeoff between cap wearability and brain coverage [1]. Increased coverage requires more fibers and larger imaging consoles, however these changes drastically reduce the wearability of the imaging cap and the portability of the entire system. The size of the detection fibers, which is driven by signal-to-noise considerations, is the primary obstacle to fabricating more wearable and portable optical neuroimaging arrays. Here we report on a design that leverages the low-noise of scientific CMOS cameras, along with binning and noise reduction algorithms to use fibers with approximately 30x smaller cross-sectional area than current high-density diffuse optical tomography (HD-DOT) systems [2]. We have developed a Super-Pixel sCMOS Diffuse Optical Tomography (SP-DOT) system (Fig. 1a) that uses 200um diameter source and detector fibers, with a lightweight low-profile, wearable design. A super-pixel algorithm leverages pixel binning to provide dynamic range (DNR), Noise Equivalent Power (NEP), and cross-talk (CT) specifications comparable to previous HD-DOT [2]. We have demonstrated retinotopic mapping with a SP-DOT system (Fig. 1). The system has a high DNR (>10 ), high frame rate (>6Hz) and low NEP (< 9fW/VHz). The sCMOS-based SP-DOT system design provides an interesting approach to improving the weight/coverage trade off and has promising signal-to-noise. While the prototype presented here is limited to the visual cortex, the weight reduction to the cap should enable full-head and effectively wearable imaging caps. This technology may open up neuroimaging to further study brain development in children, answer clinical questions right at the bedside, and extend optical imaging to study higher-order, distributed brain function.
机译:光学神经影像学的广泛采用受到帽子可穿戴性和大脑覆盖范围之间的权衡的限制[1]。增加的覆盖范围需要更多的光纤和更大的成像控制台,但是这些变化极大地降低了成像盖的耐磨性和整个系统的便携性。受信噪比驱动的检测光纤的尺寸是制造更多可穿戴和便携式光学神经成像阵列的主要障碍。在这里,我们将报告一种利用科学CMOS相机的低噪声技术以及分箱和降噪算法来使用比当前高密度漫射光学层析成像(HD-DOT)系统小的横截面面积小30倍的光纤的设计[ 2]。我们已经开发了一种超像素sCMOS扩散光学层析成像(SP-DOT)系统(图1a),该系统使用200um直径的源和检测器光纤,具有轻巧的薄型,可穿戴设计。超像素算法利用像素合并功能提供与以前的HD-DOT相当的动态范围(DNR),噪声等效功率(NEP)和串扰(CT)规格[2]。我们已经证明了使用SP-DOT系统进行视网膜斑点定位(图1)。该系统具有较高的DNR(> 10),较高的帧速率(> 6Hz)和较低的NEP(<9fW / VHz)。基于sCMOS的SP-DOT系统设计提供了一种有趣的方法来改善重量/覆盖率的平衡,并具有极好的信噪比。尽管此处介绍的原型仅限于视觉皮层,但减轻帽盖的重量应能使头部完整且可有效佩戴。这项技术可以为进一步研究儿童脑部发育打开神经影像学,在床边回答临床问题,并扩展光学成像技术以研究更高阶的分布式脑功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号