首页> 外文会议>Advanced materials XII. >Recent Advances in Fatigue Crack Growth
【24h】

Recent Advances in Fatigue Crack Growth

机译:疲劳裂纹扩展的最新进展

获取原文
获取原文并翻译 | 示例

摘要

Many of the recent advances in the understanding of the fatigue crack growth process have resulted from an improved realization of the importance of fatigue crack closure in the crack growth process. Two basic crack closure processes have been identified. One of which is known as plasticity-induced fatigue crack closure (PIFCC), and the other is roughness-induced fatigue crack closure (RIFCC). Both forms occur in all alloys, but PIFCC is a surface-related process which is dominant in aluminum alloys such as 2024-T3, whereas RIFCC is dominant in most steels and titanium alloys. A proposed basic equation governing fatigue crack growth is (da)/(dN)= A(△K_(eff)-△K_(effth))~2 (1) where △K _(eff) = K_(max)-K_(op) where Kmax is the maximum stress intensity factor in a loading cycle and Kop is the stress intensity factor at the crack opening level. △K_(effth) is the range of the stress intensity factor at the threshold level which is taken to correspond to a crack growth rate of 10-11 m/cycle. The material constant A has units of (MPa)-2, and therefore Eq. 1 is dimensionally correct. Eq.l has been successfully used in the analysis of both long and short cracks, but in the latter case modification is needed to account for elastic-plastic behavior, the development of crack closure, and the Kitagawa effect which shows that the fatigue strength rather than the threshold level is the controlling factor determining the rate of fatigue crack growth in the very short fatigue crack growth range. Eq. 1 is used to show that 1.The non-propagating cracks observed by Frost and Dugdale resulted from crack closure. 2.The behavior of cracks as short as 10 microns in length can be predicted. 3.Fatigue notch sensitivity is related to crack closure. 4.Very high cycle fatigue (VHCF) behavior is also associated with fatigue crack closure.
机译:疲劳裂纹扩展过程的理解方面的许多最新进展是由于人们越来越认识到疲劳裂纹闭合在裂纹扩展过程中的重要性。已经确定了两个基本的裂纹闭合过程。其中一种被称为可塑性引起的疲劳裂纹闭合(PIFCC),另一种称为粗糙度引起的疲劳裂纹闭合(RIFCC)。两种形式都出现在所有合金中,但是PIFCC是与表面相关的过程,在诸如2024-T3的铝合金中占主导地位,而RIFCC在大多数钢和钛合金中占主导地位。提出的控制疲劳裂纹扩展的基本方程为(da)/(dN)= A(△K_(eff)-△K_(effth))〜2(1)其中△K _(eff)= K_(max)-K_ (op)其中Kmax是加载循环中的最大应力强度因子,而Kop是裂纹开放水平处的应力强度因子。 △K_(effth)是在阈值水平的应力强度因子的范围,该范围对应于10-11 m /循环的裂纹扩展速率。材料常数A的单位为(MPa)-2,因此公式为。 1在尺寸上正确。公式1已成功用于长裂纹和短裂纹的分析,但是在后一种情况下,需要进行修改以考虑弹塑性行为,裂纹闭合的发展以及北川效应,这表明疲劳强度相当大。比阈值水平高的是在非常短的疲劳裂纹扩展范围内确定疲劳裂纹扩展速率的控制因素。等式图1用来表示1. Frost和Dugdale观察到的非扩展裂纹是由裂纹闭合引起的。 2,可以预测短至10微米的裂纹行为。 3.疲劳缺口敏感性与裂纹闭合有关。 4,极高的循环疲劳(VHCF)行为也与疲劳裂纹闭合有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号