首页> 外文会议>Active Materials: Behavior and Mechanics >Characterization of piezoelectrically induced actuation of Ni-Mn-Ga single crystals
【24h】

Characterization of piezoelectrically induced actuation of Ni-Mn-Ga single crystals

机译:Ni-Mn-Ga单晶的压电致动特性

获取原文
获取原文并翻译 | 示例

摘要

Single crystal Ni-Mn-Ga ferromagnetic shape memory alloys (FSMAs) are active materials that produce strain when a magnetic field is applied. The large saturation strain (6%) of Ni-Mn-Ga and material energy density comparable to piezoelectric ceramics make tetragonal Ni-Mn-Ga an interesting active material. However, the usefulness of the material is limited by the need for electromagnets to produce a magnetic actuation field. In this paper, an actuation method for shape memory alloys in the martensitic phase is described, in which asymmetric acoustic pulses are used to drive twin boundary motion. Experimental actuators were developed using a combination of Ni-Mn-Ga FSMA single crystals and a piezoelectric stack actuator. In bidirectional actuation without load, strains of over 3% were achieved using repeated pulses (at 100 Hz) over a 30 s interval, while 1% strain was achieved in under 1 s. The maximum strains achieved are comparable to the strains achieved using bidirectional magnetic actuation, although the time required for actuation is longer. No-load actuation also showed a nearly linear relationship between the magnitude of the asymmetric stress pulse and the strain achieved during actuation, and a positive correlation between pulse repetition rate and output strain rate, up to a pulse repetition rate of at least 100 Hz. Acoustic actuation against a spring load showed a maximum output energy density for the actuator of about 1000 J/m~3, with a peak-to-peak stress and strain of 100 kPa and 2%, respectively.
机译:单晶Ni-Mn-Ga铁磁形状记忆合金(FSMAs)是在施加磁场时会产生应变的活性材料。 Ni-Mn-Ga的大饱和应变(6%)和可与压电陶瓷媲美的材料能量密度使四方Ni-Mn-Ga成为有趣的活性材料。然而,该材料的实用性受到对用于产生磁致动场的电磁体的需求的限制。本文介绍了一种在马氏体相中形状记忆合金的驱动方法,其中使用非对称声脉冲来驱动孪晶边界运动。实验执行器是使用Ni-Mn-Ga FSMA单晶和压电叠层执行器的组合开发的。在无负载的双向驱动中,使用重复脉冲(在100 Hz下)在30 s的间隔内可实现超过3%的应变,而在1 s内可实现1%的应变。尽管致动所需的时间更长,但是达到的最大应变与使用双向磁致动产生的应变相当。空载促动还显示了非对称应力脉冲的大小与促动过程中获得的应变之间的线性关系,以及脉冲重复率与输出应变率之间的正相关关系,直至至少100 Hz的脉冲重复率。针对弹簧负载的声激励显示出该激励器的最大输出能量密度约为1000 J / m〜3,其峰峰值应力和应变分别为100 kPa和2%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号