首页> 外文会议>AAS/AIAA Space Flight Mechanics Meeting; 20070128-0201; Sedona,AZ(US) >OPTIMAL CONTROL OF A CIRCULAR SPACECRAFT FORMATION SUBJECT TO GRAVITATIONAL PERTURBATION
【24h】

OPTIMAL CONTROL OF A CIRCULAR SPACECRAFT FORMATION SUBJECT TO GRAVITATIONAL PERTURBATION

机译:重力扰动作用下的圆形空间编队的最优控制

获取原文
获取原文并翻译 | 示例

摘要

In recent years, spacecraft formations have been studied extensively as platforms for distributed sensor systems. The linearized equations of motion allow a natural circular formation which would appear particularly well-suited for Earth-sensing applications. Unfortunately, this formation is not stable when gravitational perturbations are considered. Although it may be possible to design workable sensor systems that work with the natural motion, a better understanding of the optimal fuel cost of maintaining the circular formation will enable more informed decisions in making the system trade-offs between orbit control requirements and sensor system requirements. This paper develops the optimal open-loop control for a deputy satellite to maintain a circular formation about a chief satellite. The equations of motion for the two spacecraft formation include the nonlinear two-body and J_2 gravitational terms. The chief satellite is assumed to be in a circular, inclined orbit. The desired relative motion of the deputy satellite is a circular path around the chief, with an angular rate equal to the mean motion of the primary orbit. The optimal trajectory is found using a traditional approach based on the calculus of variations for a continuous nonlinear system. This approach requires the numerical solution of the two-point boundary value problem, in which convergence to a solution is notoriously dependent upon the choice of boundary conditions for the states and costates. It is shown that the using initial states for a circular formation as derived analytically from linearized equations provides reasonable results. For an 800-km orbit, the delta-v required to maintain the circular formation is dependent upon exact initial conditions and error tolerances, but are approximately 40 m/s/year.
机译:近年来,作为分布式传感器系统的平台,对航天器编队进行了广泛的研究。线性化的运动方程式允许形成自然的圆形,这看起来特别适合于地球传感应用。不幸的是,当考虑重力扰动时,这种形成是不稳定的。尽管可能设计出能够以自然运动运行的传感器系统,但更好地了解保持圆形结构的最佳燃料成本将使我们能够做出更明智的决策,从而在轨道控制要求和传感器系统要求之间做出系统取舍。 。本文为副卫星开发了一种最佳的开环控制,以保持围绕主卫星的圆形编队。两个航天器编队的运动方程包括非线性两体和J_2重力项。假定主要卫星处于圆形倾斜轨道。副卫星所需的相对运动是绕主卫星的圆形路径,其角速度等于主轨道的平均运动。最佳轨迹是使用传统方法基于连续非线性系统的变化演算来找到的。这种方法需要两点边值问题的数值解,其中,解的收敛性众所周知地取决于状态和costates的边界条件的选择。结果表明,使用线性化方程式分析得出的圆形初始状态可以提供合理的结果。对于800公里的轨道,维持圆形形成所需的delta-v取决于确切的初始条件和误差容限,但约为40 m / s /年。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号