首页> 外文会议>The 6th international symposium on in-situ rock stress >Experimental determination of poroelastic constants for sandstone under geologic CO_2 sequestration conditions
【24h】

Experimental determination of poroelastic constants for sandstone under geologic CO_2 sequestration conditions

机译:地质CO_2固存条件下砂岩孔隙弹性常数的实验测定

获取原文
获取原文并翻译 | 示例

摘要

A long-term monitoring of carbon dioxide (CO_2) in a reservoir at depth is required for therngeological storage of CO_2. For this requirement, an inversion technique utilizing tilt data of thernground surface associated with migration of CO_2 may be one of promising techniques. Since therninversion technique is based on the poroelastic theory, poroelastic constants of reservoir rocks (e.g.,rnsandstone) should be well understood to increase reliability of the monitoring technique.rnUnderstanding of poroelastic constants is also essential in a geomechanical model simulation of therngeological sequestration of CO_2. For this purpose, focusing on a water-saturated part within arnsandstone reservoir, a set of five kinds of laboratory tests were conducted on Kimachi sandstonernsaturated with water, to determine poroelastic constants at various combinations of confining pressurern(7-40 Mpa) and pore pressure (5-25 Mpa), namely various Terzaghi’s effective stresses (2-35 Mpa).rnSkempton’s coefficient B and undrained bulk modulus were determined by B-test, in whichrnvolumetric strain and pore pressure changes with confining pressure. Drained bulk modulus andrnporoelastic constant H (inverse number of poroelastic expansion coefficient) were determined byrnP-test and H-test, in which volumetric strain changes with confining pressure and pore pressure,rnrespectively. Young’s modulus and Poisson’s ratio were determined by both drained and undrainedrntriaxial compression tests. Confining pressure and pore pressure dependencies for the poroelasticrnconstants were evaluated separately, revealing that both dependencies may be integrated byrnTerzaghi’s effective stress dependency. That is, every poroealstic constant (y) may be described by arnfunction of Terzaghi’s effective stress (σ_(εff)), y=a+b(1-e~(-σ_(eff)/10)), where a and b are constants.
机译:为了对CO_2进行地质储存,需要对深层储层中的二氧化碳(CO_2)进行长期监测。为此,利用与CO_2迁移相关的地表倾斜数据的反演技术可能是有前途的技术之一。由于反演技术是基于孔隙弹性理论的,因此应该很好地理解储层岩石(例如,砂岩)的孔隙弹性常数,以提高监测技术的可靠性。理解孔隙弹性常数对于CO_2热固存的地球力学模型模拟也至关重要。为此,重点研究了砂岩储层中的水饱和部分,对用水浸透的喜町砂岩进行了五种实验室测试,以确定围压(7-40 Mpa)和孔隙压力的各种组合下的孔隙弹性常数。 (5-25 Mpa),即各种Terzaghi的有效应力(2-35 Mpa)。rnSkempton系数B和不排水的体积模量通过B检验确定,其中体积应变和孔压随围压变化。通过rnP-test和H-test确定排水的体积模量和孔隙弹性常数H(孔隙弹性膨胀系数的倒数),其中体积应变分别随围压和孔隙压力而变化。杨氏模量和泊松比由排水和不排水三轴压缩试验确定。对多孔弹性常数的围压和孔隙压力依赖性进行了单独评估,结果表明,Terzaghi的有效应力依赖性可以综合这两种依赖性。也就是说,每个孔隙度常数(y)可以通过Terzaghi有效应力(σ_(εff))的函数来描述,y = a + b(1-e〜(-σ_(eff)/ 10)),其中a和b是常数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号