【24h】

Simulations of the edge plasma: the role of atomic, molecular and surface physics

机译:边缘等离子体的模拟:原子,分子和表面物理学的作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Atomic, molecular and surface physics plays an important role in simulations of the edge plasma in present day tokamaks, and in the predictive simulations of new devices. The edge plasma - in this context, the Scrape-Off Layer (SOL), the Private Flux Region (PFR) and core region close to the separatrix (or Last Closed Flux Surface, LCFS) - provides the boundary conditions for the main plasma, and is the region where much of the power and all of the particle exhaust occurs. It is also the region where the plasma interacts with solid surfaces, puffed gases and gas arising from recycling. The results of plasma edge simulations can depend strongly on the availability and quality of the atomic, molecular and surface data (the peak plasma temperature at the divertor was found to vary by a factor of five dependent on the choice of atomic physics data in a recent sensitivity analysis). The current material choice for ITER with Plasma Facing Components (PFCs) consisting of C, Be and W also presents challenges, both in the availability of the necessary data for W, and in the plethora of charge states for W. Another challenge presented by the material choice is the likely presence of mixed materials formed by the migration of material from one surface to another. These introduce effects like alloying and preferential sputtering as well as new (much longer) time-scales in the problem.Efforts to incorporate a bundled charge state model within one of the present edge simulation codes, SOLPS, will be described, as well as efforts to address some of the questions raised by mixed materials. Some issues related to data consistency and traceability within the context of the European effort on Integrated Tokamak Modelling will also be addressed.
机译:原子,分子和表面物理学在当今托卡马克中的边缘等离子体模拟以及新设备的预测模拟中都起着重要作用。边缘等离子体(在此情况下为刮削层(SOL),私有通量区域(PFR)和靠近分离线(或最后封闭通量表面,LCFS)的核心区域)为主要等离子体提供了边界条件,并且是发生大量功率和所有微粒排放的区域。这也是等离子体与固体表面,膨化气体和回收产生的气体相互作用的区域。等离子体边缘模拟的结果可能在很大程度上取决于原子,分子和表面数据的可用性和质量(最近,发现偏滤器上的峰值等离子体温度变化了五倍,具体取决于原子物理学数据的选择)敏感性分析)。具有由C,Be和W组成的等离子面对组件(PFC)的ITER的当前材料选择也带来了挑战,既需要获得W的必要数据,又要获得W的大量电荷状态。材料选择是由材料从一个表面迁移到另一个表面而形成的混合材料的可能存在。这些引入了诸如合金化和优先溅射之类的效果以及问题中新的(更长的)时间尺度。将描述将捆绑电荷状态模型纳入当前边缘仿真代码之一SOLPS中的工作以及工作解决混合材料引起的一些问题。在欧洲关于集成托卡马克建模的努力中,还将解决一些与数据一致性和可追溯性有关的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号