【24h】

Combustion-Driven Instabilities in Liquid-Fired Swirl Combustors

机译:液体旋流燃烧器中燃烧驱动的不稳定性

获取原文
获取原文并翻译 | 示例

摘要

Water injection into the recirculation zone of turbulent diffusion flames is an often applied technology for the reduction of flame temperatures and hence, of thermal NO_x emissions. On the other hand, water injection reduced ignition stability and may also cause stability problems due to the appearance of combustion-driven oscillations at a critical water-to-oil mass flow ratio. Combustion-driven instabilities are characterized by the formation of periodic oscillations of the global heat release rate of the flame, of the flue gas temperature and of the static pressure in the combustion chamber. These periodically unsteady operation conditions lead to a different pollutant emission pattern in comparison with steady-state operation and may also cause damage to the combustion chamber, so that the operation range of the combustion process has to be restricted in order to avoid unstable modes. The knowledge of the complex interactions between the turbulent flow field of the fuel/air/water-vapour mixture and the chemical reaction rate of the unsteady flame is an essential requirement for the understanding of the physical mechanism of combustion instability, In this work, the influence of various operation conditions (thermal load, air equivalence ratio, air preheat temperature, mass flow ratio and jet angle of the oil nozzle) on the onset of periodic flame oscillations is investigated and possible feedback mechanisms are discussed. At a constant thermal load, air equivalence ratio, air preheat temperature and a critical water to oil mass flow ratio the instantaneous change from the steady-state (oscillation-free) mode to the periodic unsteady mode of operation took place and the amplitude of the pressure oscillations showed a maximum. Furthermore, the change from steady to unsteady operation mode can also be observed by variation only of the air preheat temperature (without water injection) at a constant thermal load and air equivalence ratio. Therefore, the processes for the formation of self-sustained pressure oscillations under variation of air preheat temperature and water mass flow rate seem to be identical and to depend mainly on fluid-dynamic conditions in the stabilization zone of the swirl flame.
机译:将水注入湍流扩散火焰的再循环区域是降低火焰温度并因此降低热NO_x排放的常用技术。另一方面,注水降低了点火稳定性,并且由于在临界水油质量流量比下出现燃烧驱动的振荡而可能引起稳定性问题。燃烧驱动的不稳定性的特征在于,火焰的总体放热率,烟气温度和燃烧室内的静压形成周期性振荡。与稳态运行相比,这些周期性的不稳定运行条件导致不同的污染物排放模式,并且还可能导致燃烧室损坏,因此必须限制燃烧过程的运行范围,以避免不稳定的运行模式。燃料/空气/水蒸气混合物的湍流场与非稳定火焰的化学反应速率之间的复杂相互作用的知识是理解燃烧不稳定性的物理机理的基本要求。研究了各种运行条件(热负荷,空气当量比,空气预热温度,质量流量比和油嘴的喷射角)对周期性火焰振荡的影响,并探讨了可能的反馈机制。在恒定的热负荷,空气当量比,空气预热温度和临界水油流量比下,从稳态(无振荡)模式到周期性非稳态运行模式的瞬时变化发生了,压力振荡显示最大。此外,在恒定的热负荷和空气当量比的情况下,也可以通过仅改变空气预热温度(无注水)来观察从稳定运行模式到不稳定运行模式的变化。因此,在空气预热温度和水质量流量变化的情况下,形成自持压力振荡的过程似乎是相同的,并且主要取决于旋流火焰稳定区内的流体动力学条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号