【24h】

Organic Light Emitting Devices Containing High Glass Transition Temperature Hole Transport Layers

机译:包含高玻璃化转变温度空穴传输层的有机发光器件

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Since the demonstration of the first thin film organic light emitting device (OLED), there has been much interest in improving their performance. One of the key challenges in the further development of the technology is to meet flat panel display requirements by achieving a >10,000 hour device operational lifetime while maintaining a high (>1%) external quantum efficiency. An important device failure mechanism is the expansion of the hole transport layer (HTL) in a thermally stressed OLED . This expansion induces strain-driven failure, an effect which can be reduced by utilising a HTL with a high glass transition temperature (T_g). Here, we report the fabrication of a series of efficient OLEDs containing high T_g HTLs and their performance. Presently, a commonly used HTL is N,N'-diphenyl-N,N'-bis-α-napthylbenzidine (α- NPD)~2, with a T_g of 95℃. All of the HTLs used in this work had biphenyl backbones, like α-NPD, but utilised different amine based substituents. Both asymmetric and symmetric substitution of aryl groups on the nitrogen atom of each amine was studied, as shown in Fig.1. We incorporated the HTLs with T_g ranging from, 85℃ to 152℃, into two device structures: (i) ITO: HTL (120 nm): Au, and (ii) ITO: copper phthalocyanine (CuPc) (6 nm): HTL (35 nm): Alq_3 (40 nm): MgAg (100 nm): Ag (50 nm). Structure (i) was used to examine hole transport through the HTLs and the injection of holes from ITO since the large energy barrier at the HTL/Au interface (>2.5 eV) hindered electron injection. Structure (ii) enabled comparison of OLED performance incorporating the different HTLs with previous devices.
机译:自第一薄膜有机发光器件(OLED)的演示以来,人们一直对提高其性能表示出极大的兴趣。这项技术进一步发展的关键挑战之一是要实现平板显示器的要求,即实现超过10,000小时的设备工作寿命,同时保持较高的外部量子效率(> 1%)。重要的器件失效机制是热应力OLED中空穴传输层(HTL)的膨胀。这种膨胀引起应变驱动失效,这种效应可以通过使用具有高玻璃化转变温度(T_g)的HTL来减小。在这里,我们报告了一系列包含高T_g HTL的高效OLED的制造及其性能。目前,常用的HTL为N,N′-二苯基-N,N′-双-α-萘基联苯胺(α-NPD)〜2,T_g为95℃。这项工作中使用的所有HTL都具有联苯主链,如α-NPD,但使用了不同的基于胺的取代基。如图1所示,研究了每种胺的氮原子上芳基的不对称和对称取代。我们将T_g范围从85℃到152℃的HTL合并到两个器件结构中:(i)ITO:HTL(120 nm):Au,和(ii)ITO:铜酞菁(CuPc)(6 nm):HTL (35nm):Alq_3(40nm):MgAg(100nm):Ag(50nm)。结构(i)用于检查通过HTL的空穴传输和来自ITO的空穴注入,因为HTL / Au界面处的大能垒(> 2.5 eV)阻碍了电子注入。结构(ii)可以比较将不同HTL与以前的器件结合在一起的OLED性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号