【24h】

NANOFLUIDIC DEVICES FOR SENSING AND FLOW CONTROL

机译:用于传感和流量控制的纳米流体设备

获取原文
获取原文并翻译 | 示例

摘要

Nanofluidics is concerned with fluidic channels that are typically 1-100 nm in size. We have fabricated nanofluidic devices using both 1-D silica nanotubes and 2-D nanochannels to explore transport phenomena at the nanoscale. Here we review our work on 2-D nanochannels that provide confinement in one dimension. Our work mainly deals with two aspects of nanofluidics (a) effects related to electrostatic interactions and (b) effects related to biomolecule size. Surface charge plays an important role in nanofluidic channels, when the channel size is comparable to the Debye length. Using both electrical conductance measurements and fluorescence imaging, we studied the effects of surface charge in our nanofluidic devices, and demonstrated that the environment in nanochannels is governed by surface charge. We modified the nanochannel surface and showed that these modifications can be sensed by measuring ionic conductance of the nanochannels. Further, binding reactions involving biomolecules can be sensed at both low and high ionic concentrations. Our results showed that at low concentrations, conductance is governed by biomolecule charge, while at high concentrations it is governed by biomolecule size. Based on electrostatic effects in nanochannels, we also developed a nanofluidic transistor for flow control. This metal-oxide-solution field effect transistor was fabricated by patterning a metal gate electrode over nanochannels, similar to a MOSFET. Just as the gate voltage of a MOSFET controls carrier concentration in the semiconductor, we demonstrated that the gate voltage in a nanofluidic transistor controls the concentration of ions and biomolecules in the nanochannel, and hence controls their transport. Our fabrication process uses standard lithography, and is amenable to making networks of nanochannels. It suggests that rationally designed nanofluidic networks could be developed using this process for applications in sample preparation, sensing and switching. We are currently studying flow control and switching using field-effect, as well as ionic transport using patterned surface charge in nanofluidic devices.
机译:纳米流体与通常尺寸为1-100 nm的流体通道有关。我们已经使用一维二氧化硅纳米管和二维纳米通道制造了纳米流体器件,以探索纳米尺度的传输现象。在这里,我们回顾了我们对一维限制的二维纳米通道的研究。我们的工作主要涉及纳米流体的两个方面(a)与静电相互作用有关的效应和(b)与生物分子大小有关的效应。当通道大小与德拜长度相当时,表面电荷在纳米流体通道中起着重要作用。使用电导率测量和荧光成像,我们研究了纳米流体器件中表面电荷的影响,并证明了纳米通道中的环境受表面电荷支配。我们修饰了纳米通道表面,并表明可以通过测量纳米通道的离子电导感测这些修饰。此外,涉及生物分子的结合反应可以在低和高离子浓度下进行检测。我们的结果表明,在低浓度下,电导受生物分子电荷控制,而在高浓度下,电导受生物分子大小控制。基于纳米通道中的静电效应,我们还开发了用于流控制的纳米流体晶体管。这种金属氧化物溶液场效应晶体管是通过在纳米通道上对金属栅电极进行构图来制作的,类似于MOSFET。正如MOSFET的栅极电压控制半导体中的载流子浓度一样,我们证明了纳米流体晶体管中的栅极电压控制着纳米通道中离子和生物分子的浓度,从而控制了它们的传输。我们的制造工艺使用标准的光刻技术,并且适合制作纳米通道网络。这表明可以使用此过程开发合理设计的纳米流体网络,以用于样品制备,传感和转换。我们目前正在研究使用场效应的流量控制和切换,以及使用纳米流体设备中的带图案表面电荷的离子传输。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号