【24h】

VALIDITY OF MOLECULAR DYNAMICS BY QUANTUM MECHANICS

机译:量子力学对分子动力学的有效性

获取原文
获取原文并翻译 | 示例

摘要

MD is commonly used in computational physics to determine the atomic response of nanostructures. MD stands for molecular dynamics. With theoretical basis in statistical mechanics, MD relates the thermal energy of the atom to its momentum by the equipartition theorem. Momenta of atoms in an ensemble are determined by solving Newton's equations with inter-atomic forces derived from Lennard-Jones potentials. MD therefore assumes the atom always has heat capacity as otherwise the momenta of the atoms cannot be related to their temperature. In bulk materials, the continuum is simulated in MD by imposing PBC on an ensemble of atoms, the atoms always having heat capacity. PBC stands for periodic boundary conditions. MD simulations of the bulk are valid because atoms in the bulk do indeed have heat capacity. Nanostructures differ from the bulk. Unlike the continuum, the atom confined in discrete submicron geometries is precluded by QM from having the heat capacity necessary to conserve absorbed EM energy by an increase in temperature. QM stands for quantum mechanics and EM for electromagnetic. Quantum corrections of MD solutions that would show the heat capacity of nanostructures vanishes are not performed. What this means is the MD simulations of discrete nanostructures in the literature not only have no physical meaning, but are knowingly invalid by QM. In the alternative, conservation of absorbed EM energy is proposed to proceed by the creation of QED induced non-thermal EM radiation at the TIR frequency of the nanostructure. QED stands for quantum electrodynamics and TIR for total internal reflection. The QED radiation creates excitons (holon and electron pairs) that upon recombination produce EM radiation that charges the nanostructure or is emitted to the surroundings - a consequence only possible by QM as charge is not created in statistical mechanics. Invalid discrete MD simulations are illustrated with nanofluids, nanocars, linear motors, and sputtering. Finally, a valid MD simulation by QM is presented for the stiffening of NWs in tensile tests. NW stands for nanowire.
机译:MD在计算物理学中通常用于确定纳米结构的原子响应。 MD代表分子动力学。 MD通过统计力学的理论基础,通过等分定理将原子的热能与其动量相关联。通过用从Lennard-Jones势导出的原子间力求解牛顿方程来确定整体中原子的原子。因此,MD假设原子始终具有热容量,否则原子的动量就不能与它们的温度相关。在散装材料中,通过将PBC施加在一组原子上来在MD中模拟连续体,这些原子始终具有热容量。 PBC代表周期性边界条件。本体的MD模拟是有效的,因为本体中的原子确实具有热容。纳米结构不同于整体。与连续体不同,QM排除了局限在离散的亚微米几何形状中的原子所具有的热容量,以通过温度升高来保存吸收的EM能量。 QM代表量子力学,EM代表电磁。不会执行表明纳米结构的热容量消失的MD解决方案的量子校正。这意味着文献中离散纳米结构的MD模拟不仅没有物理意义,而且被QM认为是无效的。在替代方案中,建议通过在纳米结构的TIR频率下创建QED诱导的非热EM辐射来保护吸收的EM能量。 QED代表量子电动力学,TIR代表全内反射。 QED辐射会产生激子(氢和电子对),这些激子在复合后会产生EM辐射,从而使纳米结构带电或被发射到周围环境-由于统计力学中不会产生电荷,因此只有QM才有可能。无效的离散MD模拟通过纳米流体,纳米汽车,线性电动机和溅射进行了说明。最后,提出了由QM进行的有效MD模拟,用于拉伸试验中NW的加强。 NW代表纳米线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号