【24h】

IMPROVED THERMAL TRANSFER EFFICIENCY FOR PLANAR SOLAR THERMOPHOTOVOLTAIC DEVICES

机译:平面太阳能热光伏装置的热传递效率得到提高

获取原文
获取原文并翻译 | 示例

摘要

Solar thermophotovoltaic (STPV) devices provide conversion of solar energy to electrical energy through the use of an intermediate absorber/emitter module, which converts the broad solar spectrum to a tailored spectrum that is emitted towards a photovoltaic cell. While the use of an absorber/emitter device could potentially overcome the Shockley-Queisser limit of photovoltaic conversion, it also increases the number of heat loss mechanisms. One of the most prohibitive aspects of STPV conversion is the thermal transfer efficiency, which is a measure of how well solar energy is delivered to the emitter. Although reported thermophotovoltaic efficiencies (thermal to electric) have exceeded 10% previously measured STPV conversion efficiencies are below 1%. In this work, we present the design and characterization of a nanostructured absorber for use in a planar STPV device with a high emitter-to-absorber area ratio. We used a process for spatially-selective growth of vertically aligned multi-walled carbon nanotube (MWCNT) forests on highly reflective, smooth tungsten (W) surfaces. We implemented these MWCNT/W absorbers in a TPV system with a one-dimensional photonic crystal emitter, which was spectrally paired with a low bandgap PV cell. A high fidelity, system-level model of the radiative transfer in the device was experimentally validated and used to optimize the absorber surface geometry. For an operating temperature of approximately 1200 K, we experimentally demonstrated a 100% increase in overall STPV efficiency using a 4 to 1 emitter-to-absorber area ratio (relative to a 1 to 1 area ratio), due to improved thermal transfer efficiency. By further increasing the solar concentration incident on the absorber surface, increased emitter-to-absorber area ratios will improve both thermal transfer and overall efficiencies for these planar devices.
机译:太阳能热光电(STPV)器件通过使用中间吸收器/发射器模块将太阳能转换为电能,该模块将宽广的太阳光谱转换为向光伏电池发射的定制光谱。尽管使用吸收器/发射器设备可以克服光伏转换的Shockley-Queisser限制,但它也增加了热损失机制的数量。 STPV转换最禁止的方面之一是传热效率,它是衡量太阳能向发射器的输送情况的量度。尽管报道的热光伏效率(热电效率)已超过10%,但先前测得的STPV转换效率却低于1%。在这项工作中,我们介绍了纳米结构吸收体的设计和特性,该结构用于具有高发射极与吸收体面积比的平面STPV器件中。我们使用了一种在高反射率的光滑钨(W)表面上垂直排列的多壁碳纳米管(MWCNT)林进行空间选择性生长的过程。我们在带有一维光子晶体发射器的TPV系统中实现了这些MWCNT / W吸收器,该发射器与低带隙光伏电池光谱配对。该装置中辐射传递的高保真度,系统级模型已通过实验验证,并用于优化吸收器表面的几何形状。对于约1200 K的工作温度,我们通过实验证明了发射器与吸收器的面积比为4:1(相对于面积比为1:1),由于提高了热传递效率,整体STPV效率提高了100%。通过进一步增加入射在吸收器表面上的太阳光的浓度,增加的发射器与吸收器的面积比将改善这些平面器件的热传递和整体效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号