【24h】

IN ORBIT PERFORMANCE OF A FULLY AUTONOMOUS STAR TRACKER

机译:全自动恒星跟踪仪的在轨性能

获取原文
获取原文并翻译 | 示例

摘要

The Department of Automation at DTU has developed the Advanced Stellar Compass (ASC), a fully autonomous star tracker, for use as high precision attitude reference onboard spacecrafts. The ASC is composed of a CCD-based camera and a powerful microprocessor containing star catalogue, image-analysis software and a search engine. The unit autonomously performs all tasks necessary to calculate the inertial altitude from a star image. To allow for flexible attitude manoeuvres, the ASC can, simultaneously, drive from one to four cameras, efficiently removing dropouts from, e.g., sun blinding of one camera. The key features of the ASC are fast and extremely robust arcsecond accuracy in a miniature design. Due to the attractive ratios of performance to mass, power and cost, the ASC has been selected as the baseline attitude sensor for a suite of missions by the major space agencies of the world. Generally, it is difficult to test and verify the true robustness and accuracy of a star tracker on ground. This is caused by the fact that only real-sky tests offer high fidelity stimulation of the sensor, while the atmosphere instabilities result in a dominant noise source intrinsically limiting the achievable accuracy. This paper compares in-orbit performance with ground test starting with a brief summary of the ASC configurations on the missions referenced, i.e. Teamsat, ASTRID2 and Oersted. Then the in-orbit operation and performance of the ASC with special emphasis on robustness and closed loop operation aspects is discussed based on specific attitude manoeuvres. This is followed by a comparison between ground-test and in orbit operation in situations where the instrument for some reason has to operate close to bright objects. For reference, simulations and in-orbit performance of stray light baffles are given. Finally, the accuracy over the lifetime is discussed. The importance of the last topic is augmented by factors such as radiation, aging by direct sun exposure and non-stellar objects.
机译:DTU的自动化部门开发了先进的恒星罗盘(ASC),这是一种完全自动的恒星跟踪仪,可用作航天器的高精度姿态参考。 ASC由基于CCD的相机和功能强大的微处理器组成,该微处理器包含星表,图像分析软件和搜索引擎。该单元自动执行从星图计算惯性高度所需的所有任务。为了实现灵活的姿态操作,ASC可以同时从一台摄像机驱动到四台摄像机,从而有效地消除了例如一台摄像机的遮阳造成的落差。 ASC的主要功能是在微型设计中具有快速而强大的弧秒精度。由于性能,质量,功率和成本的诱人比率,ASC被世界主要航天机构选作一系列任务的基线姿态传感器。通常,很难在地面上测试和验证恒星追踪器的真实鲁棒性和准确性。这是由于以下事实造成的:只有实际测试才能对传感器进行高保真度刺激,而大气的不稳定性会导致主要的噪声源本质上限制了可达到的精度。本文将对在轨性能与地面测试进行比较,首先简要介绍所提及任务(即Teamsat,ASTRID2和Oersted)的ASC配置。然后,基于特定的姿态演算,讨论了ASC的在轨运行和性能,特别强调了鲁棒性和闭环运行方面。接下来是在地面测试和在轨操作之间的比较,在这种情况下,由于某种原因,仪器必须在明亮的物体附近操作。作为参考,给出了杂散光挡板的仿真和在轨性能。最后,讨论了整个寿命期间的精度。最后一个主题的重要性因诸如辐射,直接日晒和非星体的老化等因素而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号