【24h】

Discharge oscillation mode transition of a Hall thruster

机译:霍尔推进器的放电振荡模式转变

获取原文
获取原文并翻译 | 示例

摘要

The discharge plasma of Hall thrusters exhibits either a stable or oscillatory mode depending on operation conditions such as mass flow rate, magnetic field, discharge voltage, and wall materials. A one-dimensional hybrid-direct kinetic solver is used to model the axial transport of the Hall thruster discharge plasma.[1] The predicted results including mean discharge current, discharge current oscillation, and breathing mode frequency show good agreement with experimental data.[2] As the magnetic field strength decreases, the azimuthal and axial electron drift velocities increase. The increase in axial electron drift results in larger Joule heating that triggers an ionization instability and causes the breathing mode oscillation. The electron thermal energy decreases due to the increase in electron kinetic energy, and thus the effect of plasma-wall interaction that stabilizes the ionization instability becomes smaller at low magnetic fields. It is suggested that the occurrence of a space charge limited sheath is not the direct mechanism of stable discharge mode but is the mechanism that generates the stable mode in a wide range of magnetic fields. The numerical results support the experimental observation that axial discharge oscillations are dominant over azimuthal rotating structure in the oscillatory breathing mode. The present investigation suggests that the electron current must be optimal to achieve a stable discharge mode.
机译:霍尔推进器的放电等离子体根据工作条件(例如质量流量,磁场,放电电压和墙体材料)呈现稳定或振荡模式。一维混合直接动力学求解器用于模拟霍尔推进器放电等离子体的轴向传输。[1]预测结果包括平均放电电流,放电电流振荡和呼吸模式频率与实验数据吻合良好[2]。随着磁场强度的降低,方位角和轴向电子漂移速度增加。轴向电子漂移的增加会导致更大的焦耳热,从而触发电离不稳定并导致呼吸模式振荡。电子热能由于电子动能的增加而降低,因此使离子化不稳定性稳定的等离子体-壁相互作用的影响在低磁场下变小。有人认为,限制空间电荷的鞘层的发生不是稳定放电模式的直接机制,而是在宽范围的磁场中产生稳定模式的机制。数值结果支持了实验性观察,即在振荡呼吸模式下,轴向放电振荡优于方位旋转结构。目前的研究表明,电子电流必须达到最佳状态才能达到稳定的放电模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号