首页> 外文会议>The 41st IEEE International Conference on Plasma Science, and the 20th International Conference on High-Power Particle Beams >Diagnostics of atmospheric pressure microwave generated micro-plasma by using optical emission spectroscopy
【24h】

Diagnostics of atmospheric pressure microwave generated micro-plasma by using optical emission spectroscopy

机译:发射光谱法诊断大气压微波产生的微等离子体

获取原文
获取原文并翻译 | 示例

摘要

Summary form only given. Portable low-cost microplasma sources received interest in the past decade due to their various applications including materials processing, biomedical and chemical analysis, and optical radiation sources.[1-5] In particular, for atmospheric pressure microwave microplasmas that do not require vacuum systems, it is possible to realize 3D motion operation and portable lower-cost operation. Further, by using higher frequency energy (radio frequency and microwave) to power the microplasma discharge, non-LTE (non-local thermodynamic equilibrium) plasmas have the advantage of reducing the erosion of electrodes and also producing high power density plasmas with reasonably low power consumption.In this investigation two microwave-powered microplasma systems are characterized using optical emission diagnostics. The first system is developed based on a double-strip-line structure. Top and bottom copper strip-lines are separated by a dielectric material. The structure is powered at one end and the plasma is formed at the other end where the two copper strip-lines are brought together to a gap with 250 microns separation. The feedgas is flowed through a channel in the dielectric such that it exits with the feedgas flowing into the gap created by the two strip-lines. The second system is constructed using a small foreshortened cylindrical cavity that has a hollow inner conductor and a small capacitive gap at the end of the cavity. The feedgas is flowed through a 2 mm inner diameter quartz tube which is located inside the hollow inner conductor of the cavity. Pure Argon, ArgonOxygen mixtures (up to 10% Oxygen) and Argon-Hydrogen (with 2% hydrogen) are used as feedgas. The microwave power used for the discharges varies from 5 to 60 Watts. The flow rate of the feed-gases varies from 900 sccm - 2100 sccm. The optical emission spectroscopy technique was used to diagnose the discharges. Plasma properties such as rotational temperatures and electron densities - nder different conditions (power, flow rate and gas combinations) are measured and analyzed.
机译:仅提供摘要表格。便携式低成本微等离子体源由于其在材料处理,生物医学和化学分析以及光辐射源等各种应用而在过去十年中受到关注。[1-5]特别是对于不需要真空系统的大气压微波微等离子体。 ,可以实现3D运动操作和便携式低成本操作。此外,通过使用高频能量(射频和微波)为微等离子体放电提供动力,非LTE(非局部热力学平衡)等离子体具有减少电极腐蚀的优点,并且还可以产生具有相当低功率的高功率密度等离子体在这项研究中,使用光发射诊断对两个微波供电的微等离子体系统进行了表征。第一个系统是基于双条线结构开发的。顶部和底部的铜带状线由介电材料隔开。该结构的一端供电,而等离子体的另一端形成,在该处,两条铜带状线汇聚在一起,形成间距为250微米的间隙。原料气流经电介质中的通道,从而随着原料气流入两条带状线所形成的间隙而流出。第二个系统是使用一个小的缩短的圆柱形腔体构成的,该腔体具有一个中空的内部导体,并且在腔体的端部具有一个小的电容间隙。原料气流经2毫米内径石英管,该石英管位于空腔的中空内部导体内。纯氩气,氩气氧气混合物(氧气含量最高为10%)和氩气氢气(氢气含量为2%)用作进料气。用于放电的微波功率从5瓦到60瓦不等。进料气的流速在900sccm-2100sccm之间变化。光学发射光谱技术用于诊断放电。等离子特性,例如旋转温度和电子密度-在不同条件下(功率,流量和气体组合)进行测量和分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号