首页> 外文会议>34th Wind energy symposium 2016 >Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES
【24h】

Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES

机译:叶片边界层解析CFD与混合URANS-LES在5MW风力发电机上的大气湍流与叶片边界层动力学的相互作用

获取原文
获取原文并翻译 | 示例

摘要

Modern commercial megawatt-scale wind turbines occupy the lower 15-20% of the atmospheric boundary layer (ABL), the atmospheric surface layer (ASL). The current trend of increasing wind turbine diameter and hub height increases the interaction of the wind turbines with the upper ASL which contains spatio-temporal velocity variations over a wide range of length and time scales. This work centers on the development of a computational framework to simulate the interaction between the atmospheric and wind turbine blade turbulence dynamical systems using a two step one-way coupled approach. Pseudo-spectral large eddy simulation (LES) is used to generate a true (equilibrium) atmospheric boundary layer over a flat land with specified surface roughness and heating consistent with the stability state of the daytime lower troposphere. Using the data from the precursor simulation as inflow conditions, a second simulation is performed on a smaller domain around the wind turbine using finite volume CFD with a body-fitted grid to compute the unsteady blade loads in response to atmospheric turbulence. The ability of our computational framework to capture blade boundary layer dynamics in response to atmospheric turbulence is intimately associated with the design of our grid and with the development of a new hybrid URANS-LES turbulence model. The new turbulence model blends a 1-equation LES subgrid model in the far field with the k-w-SST-SAS URANS model to the blade boundary layer adjacent to the blade surface. With this computational framework, we simulated a single rotating blade of the NREL 5MW wind turbine in the moderately convective daytime atmosphere using blade-boundary-layer-resolved CFD simulations. The analysis of load fluctuations on a single rotating blade in a daytime atmosphere using blade-boundary-layer-resolved CFD has yielded two key results: (1) Whereas non-steady blade loadings are generally described as the response to non-steadiness in wind speed, our analysis show that time changes in wind vector direction are a much greater contributor to load transients, and strongly impact boundary layer dynamics; (2) largest temporal variations in loadings result from three distinct dynamical responses with disparate time scales: advection of atmospheric eddies through the rotor at the minute time scale, blade response at the rotor rotation time scale (~ 5s) and blade response to turbulence-induced forcings as the blades traverse internal atmospheric eddy structure at sub-blade rotation time scales. In our simulations at rated wind speed, quasi-2D blade boundary layer separation is observed over most of the outer 50% of the blade with chordwise motions, correlated with time changes in relative wind vector angle, which itself is strongly correlated with changes in blade sectional and integrated loads. Thus, tools based on sectional "table lookups" like FAST and Actuator Line Methods, improved using data from high-fidelity simulations and experiment, have the potential to capture the major fluctuations in integrated loads from daytime atmospheric turbulence.
机译:现代商用兆瓦级风力涡轮机占据了大气边界层(ABL)和大气表层(ASL)的下15-20%。当前增加风力涡轮机直径和轮毂高度的趋势增加了风力涡轮机与上部ASL的相互作用,上部ASL包含在很大的长度和时间范围内的时空速度变化。这项工作的重点是使用两步单向耦合方法来模拟大气和风力涡轮机叶片湍流动力系统之间相互作用的计算框架。伪谱大涡模拟(LES)用于在平坦的陆地上生成一个真实的(平衡的)大气边界层,该平坦的陆地具有指定的表面粗糙度和与白天低层对流层稳定状态一致的加热。使用来自前驱体模拟的数据作为流入条件,使用有限体积CFD和车身网格对风力涡轮机周围的较小区域进行第二次模拟,以计算响应于大气湍流的非稳态叶片载荷。我们的计算框架捕获响应于大气湍流的叶片边界层动力学的能力与我们的网格设计以及新的混合URANS-LES湍流模型的开发紧密相关。新的湍流模型将远场中的1方程LES子网格模型与k-w-SST-SAS URANS模型混合到与叶片表面相邻的叶片边界层。在此计算框架下,我们使用解析度为BFD的叶片边界层模拟了NREL 5MW风力发电机在白天对流中的单个旋转叶片。使用叶片边界层解析CFD对单个旋转叶片在白天大气中的载荷波动进行分析得出了两个关键结果:(1)非稳态叶片载荷通常被描述为对风中非稳态的响应速度,我们的分析表明,风矢量方向上的时间变化对载荷瞬变的影响更大,并且极大地影响了边界层动力学。 (2)最大的时间变化是由三个不同的时间尺度不同的动力响应引起的:在分钟时间尺度上通过转子的大气涡流平流,在转子转动时间尺度下(〜5s)的叶片响应以及叶片对湍流的响应-当叶片在副叶片旋转时间尺度上穿越内部大气涡流结构时,会产生强迫。在我们以额定风速进行的模拟中,通过弦向运动在叶片的外侧50%的大部分区域中观察到了准2D叶片边界层分离,这与相对风向角的时间变化相关,而风向角的时间变化本身与叶片的变化强烈相关截面载荷和综合载荷。因此,基于FAST和Actuator Line Methods等分段“表格查询”的工具,通过使用高保真模拟和实验数据进行了改进,具有捕获白天大气湍流引起的整体负荷的主要波动的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号