首页> 外文会议>The 2nd joint US-Canada conference on composites, American Society for Composites 26th annual technical conference. >Carbon Nanotubes/Epoxy Nanocomposites for UV-Assisted Direct-Write Fabrication of Microstructures: Mechanical and Rheological Studies
【24h】

Carbon Nanotubes/Epoxy Nanocomposites for UV-Assisted Direct-Write Fabrication of Microstructures: Mechanical and Rheological Studies

机译:碳纳米管/环氧树脂纳米复合材料用于紫外线辅助的微结构直接写法制造:机械和流变学研究

获取原文
获取原文并翻译 | 示例

摘要

We report on the preparation of biofunctionalized single-walled carbon nanotubern(BF-SWCNT)/epoxy nanocomposites with different mixing strategies. ThernSWCNTs were first purified by acidic treatment and then functionalized by graftingrnbiomaterials onto the SWCNTs surface. The BF-SWCNTs were dispersed within anrnepoxy resin by means of ultrasonication and/or three-roll mixing methods. It isrnfound that the mixing procedure consisting of ultrasonication and three-roll mixingrnis an effective method to disperse nanotubes within epoxy matrix. The biomaterialgraftingrnof SWCNTs surfaces along with their fair dispersion led to a significantrnincrease of viscosity of the nanocomposite suspensions which enabled the UVassistedrndirect-write fabrication of microfibers suspended between two pads and 3Drnfreeform helicoidal microsprings. Mechanical characterization of the slenderrnmicrofibers (150 μm diameter) at a nanotube load of 1wt%, under tension revealedrnconsiderable increase in both modulus (by ~93%) and strength (by 75%) comparedrnto the values for pure epoxy resin. These mechanical improvements are believed tornbe a consequence of the biomaterial-grafting of the nanotubes surfaces whichrnfacilitate load transfer and their fairly-dispersion into the epoxy matrix. Thernmanufactured nanocomposite microstructures containing BF-SWCNT could findrnapplications in biosensors, where other biomaterials and hazardous gaseous can berndetected by affecting the electrical conductivity of nanotube-reinforcedrnnanocomposite microstructures.
机译:我们报告了不同混合策略的生物功能化单壁碳纳米管(BF-SWCNT)/环氧纳米复合材料的制备。首先通过酸性处理纯化SWCNT,然后通过将生物材料接枝到SWCNT表面上使其功能化。通过超声和​​/或三辊混合法将BF-SWCNT分散在环氧基树脂中。发现由超声和三辊混合器组成的混合过程是将纳米管分散在环氧基质中的有效方法。 SWCNTs的生物材料表面及其合理的分散度导致纳米复合材料悬浮液的粘度显着提高,这使得悬浮在两个垫和3Dfreefree螺旋微弹簧之间的微纤维可以通过UV辅助直接写法制备。细长的超细纤维(直径为150μm)在1wt%的纳米管负载下的机械特性在张力下显示出与纯环氧树脂相比,模量(约93%)和强度(约75%)显着增加。认为这些机械改进是纳米管表面的生物材料接枝的结果,这有利于负载转移及其在环氧基质中的合理分散。含BF-SWCNT的纳米复合材料微结构可以在生物传感器中找到应用,通过影响纳米管增强型纳米复合材料的电导率可以检测出其他生物材料和有害气体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号