【24h】

Study on Diffusion MR Referential Image of Human Brain

机译:人脑弥散MR参考图像的研究

获取原文
获取原文并翻译 | 示例

摘要

Fig.5 is the diffusion MR referential image obtained from diffusivity images of 7 volunteers. Obviously, in this image, the contour line of brain is blurry and the contrast of image is low. There are two reasons on this problem. On one hand, the precision of normalization is not high enough to match the structure of different volunteers with that of the template image. To solve this problem, more normalizing parameters and high-precision image resample method are required. On the other hand, in this experiment, we only acquired two sets of image data of every volunteer, one of which is T_2-weighted image (no diffusion-sensitive gradient), the other is diffusion-weighted image (diffusion sensitive gradient incorporated). So we do not have enough data to use regression method to obtain the corresponding diffusivity image. Therefore, the diffusivity image shown above is the processing result in use of equation (4) but without regression analysis. For this reason, the diffusivity image has much background noise outside the brain that makes the brain image blurry. D is often very small, in other word. (ln(S_0 (x, y, z) / S_1 (x, y, z))/(b_1 - b_0) is very small. Hence even small background noise will badly affect the processing result of image. To solve this problem, one method is acquire many sets of image data, then obtain the diffusivity image using regression analysis, the other is extracting contour line of brain, then only process the image data inside the contour line of brain. Therefore, the background noise out of brain will not have any effect on the brain image. We can find that the contrast of normalized image is decreased from above figures. The reason is that in the process of normalization, the algorithm we used should do image resampling to the original image. Image resample is actually a process of interpolation to the original data. Hence the contrast of original image will be inevitably decreased.
机译:图5是从7名志愿者的扩散图像获得的扩散MR参考图像。显然,在该图像中,大脑的轮廓线模糊并且图像的对比度低。关于此问题有两个原因。一方面,归一化的精度不足以使不同志愿者的结构与模板图像的结构相匹配。为了解决该问题,需要更多的归一化参数和高精度的图像重采样方法。另一方面,在本实验中,我们仅获取了每位志愿者的两组图像数据,其中一组是T_2加权图像(无扩散敏感梯度),另一组是扩散加权图像(并入了扩散敏感梯度) 。因此,我们没有足够的数据来使用回归方法来获得相应的扩散率图像。因此,以上所示的扩散率图像是使用等式(4)的处理结果,而没有回归分析。因此,扩散图像在大脑外部具有很多背景噪声,这会使大脑图像变得模糊。换句话说,D通常很小。 (ln(S_0(x,y,z)/ S_1(x,y,z))/(b_1-b_0)非常小。因此,即使很小的背景噪声也会严重影响图像的处理结果。为解决此问题,一种方法是获取多组图像数据,然后使用回归分析获得扩散图像,另一种方法是提取大脑的轮廓线,然后仅处理大脑轮廓线内的图像数据,因此,来自大脑的背景噪声会对大脑图像没有任何影响,我们可以发现归一化图像的对比度从上图中降低了,原因是在归一化过程中,我们使用的算法应该对原始图像进行图像重采样,图像重采样为实际上是对原始数据进行插值的过程,因此不可避免地会降低原始图像的对比度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号