首页> 外文会议>24th NATO/CCMS International Technical Meeting (ITM) on Air Pollution Modelling and Its Application, May 15-19, 2000, Boulder, Colorado >A MODEL FOR TROPOSPHERIC MULTIPHASE CHEMISTRY: APPLICATION TO ONE CLOUDY EVENT DURING THE CIME EXPERIMENT
【24h】

A MODEL FOR TROPOSPHERIC MULTIPHASE CHEMISTRY: APPLICATION TO ONE CLOUDY EVENT DURING THE CIME EXPERIMENT

机译:对流多相化学模型:在一项CIME实验中应用于一个偶然事件

获取原文
获取原文并翻译 | 示例

摘要

In this study, we have used a multiphase box model which takes into account an explicit chemistry mechanism for both gas and aqueous phase for a rural environment and the kinetic of mass transfer between phases (Schwartz, 1986). The model is, then, initialized with multiphase measurements performed by Voisin et al. (2000) during the CIME experiment. The 13th December 1997, the cloud chemistry is mainly governed by high NO_x and high formaldehyde levels and by an acidic pH in the droplets. A comparison of the model results is performed versus recent theoretical results from Herrmann et al. (1999), who proposed a slightly different chemical scheme, including C2 chemistry and transition metal chemistry but neglecting some reaction pathways, such as the one involving OHCH_2O_2 radical and using unrealistic microphysical cloud conditions (cloud duration, constant liquid water content, small droplet radius). On the basis of this confrontation with theoretical results from Herrmann et al. (1999), a detailed analysis of radical chemistry and of the relative importance of those radicals in the oxidation of volatile organic compounds is performed. Depending on the stage of evolution of the cloud, either growing or dissipating, a different partitioning of organic volatile compounds is observed between the gas phase and the aqueous phase. These differences lead to different oxidation pathways that should be accounted for in simulating multiphase chemistry. Then, evidence for the possible role of aqueous peroxonitric acid in the conversion of S(Ⅳ) to S(Ⅵ), already underlined by Amels et al. (1996) has been found in case of low hydrogen peroxide concentration levels associated to the high NO_x regime observed during the experiment. These results show the capability of such a chemical box model, including exhaustive and explicit multiphase chemistry of highlighting wild variability in reaction and oxidation pathways, that cannot be directly put in evidence through actual measurements. They also indicate the need for lacking observations of gases such as formaldehyde that would greatly help this kind of approach.
机译:在这项研究中,我们使用了一个多相箱模型,该模型考虑了农村环境中气相和水相的显式化学机理以及相之间的传质动力学(Schwartz,1986)。然后,用Voisin等人进行的多相测量来初始化模型。 (2000)在CIME实验期间。 1997年12月13日,云化学主要受高NO_x和高甲醛水平以及液滴中酸性pH值的影响。将模型结果与Herrmann等人的最新理论结果进行了比较。 (1999),他提出了一个略有不同的化学方案,包括C2化学和过渡金属化学,但忽略了一些反应途径,例如涉及OHCH_2O_2自由基和使用不切实际的微物理云条件(云持续时间,恒定的液态水含量,小液滴半径) )。基于这种对抗,Herrmann等人的理论结果。 (1999),进行了自由基化学的详细分析以及这些自由基在挥发性有机化合物氧化中的相对重要性。根据云的发展阶段(生长或消散),在气相和水相之间会观察到有机挥发性化合物的不同分配。这些差异导致模拟多相化学过程中应考虑的不同氧化途径。然后,证据表明过氧硝酸水溶液可能在S(Ⅳ)向S(Ⅵ)的转化中发挥作用,这已经被Amels等人强调了。在实验过程中观察到与高NO_x方案相关的过氧化氢浓度水平较低的情况下,已发现(1996)。这些结果表明了这种化学盒模型的能力,包括详尽和显式的多相化学,突出了反应和氧化途径中的野生变异性,而不能通过实际测量直接证明这一点。他们还指出需要缺乏对甲醛等气体的观察,这将大大有助于这种方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号