【24h】

UAS ground-based detect and avoid capability

机译:UAS地面检测和避免能力

获取原文
获取原文并翻译 | 示例

摘要

The New York Unmanned Aircraft Systems (UAS) Test Site is developing a next-generation capability for supporting extended UAS beyond line-of-sight (BLOS) operations in airport terminal areas and in transition airspace. The Test Site has set up an instrumented test range to provide air traffic surveillance. This test range currently extends from the Griffiss International Airport, in Rome, New York, and its Class D airspace to about 40 NM to the north. To safely integrate UAS into civil airspace, a robust detect and avoid (DAA) capability is required. RTCA Special Committee (SC) 228 is incorporating ground-based detect and avoid (GBDAA) into minimum operating performance standards (MOPS) for UAS DAA in the current SC-228 Phase Two. SC-228 is also developing GB primary radar MOPS for detecting noncooperating air traffic. SC-228 Phase Two MOPS development scope supports civil UAS equipped to operate under IFR rules in extended UAS operations in Class D, E, and G, airspace, down to but not including ground operations. The guiding RTCA SC-228 Terms of Reference (TORs) focus on both airborne DAA systems (with sensors onboard the unmanned aircraft) and GBDAA sensors. While the SC-228 DAA MOPS scope is limited to large UAS operating under IFR, this paper makes a case that SC-228 MOPS-compliant GBDAA systems can also support small UAS operations in Very Low Level (VLL) airspace. The New York UAS Test Site Griffiss test range system employs multi-sensor fusion, using a combination of primary radar, wide area multilateration, and ADS-B, to track both cooperative and noncooperative air traffic. The system operates in combination with other dedicated air traffic surveillance sensors, including airborne DAA sensors. The system incorporates data collection, storage, and analysis capabilities supporting UAS integration into terminal and transition airspace, with live, virtual and constructive (LVC) simulation capabilities. By repurposing and leveraging mature systems such as ASDE-X and ASSC, the New York UAS Test Site not only avoids development of completely new prototype systems but also secures the advantage of built-in system health and performance monitoring. This paper supports the argument that dedicated capabilities such as those under development at the New York UAS Test Site are necessary to support development of concepts of operation (ConOps) and performance standards for future certification of UAS DAA systems. An instrumented test range will assist in validation of DAA system performance standards. The paper concludes with an example of how multi-sensor fusion in a range instrumentation system can be employed to make the safety case for beyond line-of-sight (BLOS) UAS operation.
机译:纽约无人飞机系统(UAS)试验场正在开发下一代功能,以支持扩展的UAS超出机场航站区和过渡空域中的视线(BLOS)操作。测试地点已经建立了仪器化的测试范围,以提供空中交通监控。该测试范围目前从纽约罗马的格里菲斯国际机场及其D级领空延伸至北部约40海里。为了将UAS安全地集成到民用空域中,需要强大的检测和避免(DAA)功能。 RTCA特别委员会(SC)228在当前的SC-228第二阶段中,将地面探测和避免(GBDAA)纳入UAS DAA的最低运行性能标准(MOPS)中。 SC-228还开发了GB主雷达MOPS,用于检测不合作的空中交通。 SC-228第二阶段的MOPS开发范围支持民用UAS,该民用UAS能够在D,E和G类空域的扩展UAS操作中(但不包括地面操作)按照IFR规则进行操作。指导性RTCA SC-228职权范围(TOR)集中于机载DAA系统(无人飞机上带有传感器)和GBDAA传感器。虽然SC-228 DAA MOPS的范围仅限于在IFR下运行的大型UAS,但本文提出的情况是,符合SC-228 MOPS的GBDAA系统也可以支持超低空(VLL)空域中的小型UAS操作。纽约UAS试验场格里菲斯试验场系统采用多传感器融合技术,结合了主雷达,广域多边测量和ADS-B技术,可以跟踪合作和非合作空中交通。该系统与其他专用空中交通监视传感器(包括机载DAA传感器)结合使用。该系统具有数据收集,存储和分析功能,支持将UAS集成到终端和过渡空域中,并具有实时,虚拟和建设性(LVC)仿真功能。通过重新利用和利用ASDE-X和ASSC等成熟系统,纽约UAS测试站点不仅避免开发全新的原型系统,而且还确保了内置系统运行状况和性能监视的优势。本文支持这样一种论点,即专用的功能(如纽约UAS测试站点正在开发的功能)对于支持操作概念(ConOps)和性能标准的开发对于UAS DAA系统的未来认证是必不可少的。仪器化的测试范围将有助于验证DAA系统性能标准。本文以一个示例为例,该示例说明了如何将测距仪器系统中的多传感器融合技术用于超视距(BLOS)UAS操作的安全案例。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号