首页> 外文会议>2017 IEEE 16th International Symposium on Network Computing and Applications >Distributed deep learning on edge-devices: Feasibility via adaptive compression
【24h】

Distributed deep learning on edge-devices: Feasibility via adaptive compression

机译:边缘设备上的分布式深度学习:通过自适应压缩的可行性

获取原文
获取原文并翻译 | 示例

摘要

A large portion of data mining and analytic services use modern machine learning techniques, such as deep learning. The state-of-the-art results by deep learning come at the price of an intensive use of computing resources. The leading frameworks (e.g., TensorFlow) are executed on GPUs or on high-end servers in datacenters. On the other end, there is a proliferation of personal devices with possibly free CPU cycles; this can enable services to run in users' homes, embedding machine learning operations. In this paper, we ask the following question: Is distributed deep learning computation on WAN connected devices feasible, in spite of the traffic caused by learning tasks? We show that such a setup rises some important challenges, most notably the ingress traffic that the servers hosting the up-to-date model have to sustain. In order to reduce this stress, we propose AdaComp, a novel algorithm for compressing worker updates to the model on the server. Applicable to stochastic gradient descent based approaches, it combines efficient gradient selection and learning rate modulation. We then experiment and measure the impact of compression, device heterogeneity and reliability on the accuracy of learned models, with an emulator platform that embeds TensorFlow into Linux containers. We report a reduction of the total amount of data sent by workers to the server by two order of magnitude (e.g., 191-fold reduction for a convolutional network on the MNIST dataset), when compared to a standard asynchronous stochastic gradient descent, while preserving model accuracy.
机译:数据挖掘和分析服务中的很大一部分都使用现代机器学习技术,例如深度学习。深度学习的最新成果是以大量使用计算资源为代价的。领先的框架(例如TensorFlow)在GPU或数据中心的高端服务器上执行。另一方面,大量的个人设备可能具有免费的CPU周期。这可以使服务在用户家中运行,从而嵌入机器学习操作。在本文中,我们提出以下问题:尽管学习任务引起流量,但在广域网连接的设备上进行分布式深度学习计算是否可行?我们表明,这种设置带来了一些重要的挑战,最显着的是托管最新模型的服务器必须承受的入口流量。为了减轻这种压力,我们提出了AdaComp,这是一种用于将工作人员更新压缩到服务器上模型的新颖算法。适用于基于随机梯度下降的方法,它结合了有效的梯度选择和学习速率调制。然后,我们使用将TensorFlow嵌入Linux容器的仿真器平台,实验并测量压缩,设备异构性和可靠性对学习模型准确性的影响。与标准异步随机梯度下降相比,我们报告了工作者发送到服务器的数据总量减少了两个数量级(例如,MNIST数据集上的卷积网络减少了191倍),同时保留了模型准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号