首页> 外文会议>2017 2nd International Conference on Telecommunication and Networks >Taming infinities in the modelling of radiofrequency miniaturized devices and designing physics-inspired regularization techniques
【24h】

Taming infinities in the modelling of radiofrequency miniaturized devices and designing physics-inspired regularization techniques

机译:驯服射频微型设备建模和设计灵感源自物理的正则化技术的无限性

获取原文
获取原文并翻译 | 示例

摘要

Modern telecommunication and signal processing applications have motivated extreme miniaturization of acoustic, electronic, photonic, plasmonic, polariton, and molecular devices. The complexity of the design, optimization, modelling and simulation of contemporary devices mirrors challenges encountered in their sophisticated fabrication processes. The intricate topologies of individual devices and mazelike interwoven circuitry of “smart” and “cognitively-enabled” systems and system-of-systems, alike, have been blurring device boundaries, making precise interpretation of their operation and interconnectivity an arduous undertaking. The prospect of impending realization of ultra-small devices, harvesting quantum-phenomena, has been adding further pressure to modelling- and design rules which are yet to be devised, fine-tuned, tested, and established on firm bases. There is an urgent need for a new type of “mathematics” to respond to the immense structural- and functional complexity of the devices, thus calling for a genuine paradigm change in device modelling and design. Miniaturization of micro-acoustic devices in telecommunication engineering applications involves a plethora of physical and mathematical foundational challenges which need to be addressed masterfully. This presentation uses the physical phenomena involved in today's micro-acoustic devices to communicate the variety of enabling methodological advances which have been achieved. The developed techniques exhibit a promising generality with a wide-range of applications including terahertz- and quantum level devices. Considering major commercially available analysis tools; i.e., the Finite Element Method (FEM), Finite Difference Method FDM (spectral-or time domain formulations), and the Boundary Element Method (BEM), this presentation focuses on the BEM. However, BEM involves problem-specific Dyadic Green's Functions (DGFs) which are plagued with strong- and hyper-strong singularities severely obscuring numerical calculations, in particular in the vicinity of sharp edges and corners of bounding surfaces. Field problems involving (i) elasto-electric, (ii) elasto-electro-magnetic, (iii) thermo-elasto-electric, and (iv) thermo-elasto-electro-magnetic phenomena are considered following a unified approach. Uni-, bi-, and for the first time, tri-, and quad-anisotropic and inhomogeneous media, supporting the simultaneous interaction of thermal, acoustic, and electro-magnetic waves at radiofrequencies are considered. The proposed analysis techniques are based on the conjecture that “linearized governing- and constitutive equations in mathematical physics are diagonalizable.” The validity of this statement is established in the case of thermo-elasto-electro-magnetics. A further recent rigorous result demonstrates the existence of a system of equations supplementing diagonalized forms. The derivation of the diagonalized- and supplementary partial differential equations utilizes classical operators in mathematical physics employing conveniently defined “scaffolding” matrices allowing finitary algebras. The proposed diagonalized- and associated supplementary equations have enabled systematizing the description of the physical phenomena involved and led to two novel algebraic- and exponential regularization techniques. The exponential renormalization method generalizes and puts on a firm basis earlier ad hoc regularization techniques. The results suggest further generalizations to attack renormalization challenges encountered in quantum electrodynamics. Additionally, systematic advancements of the standard formulations in FDM, FEM and BEM are presented. Thereby, the key unifying tool has been the concept of the “resolution of identity” in the functional analysis and a generalization thereof. The construction of Green's functions-inspired wavelets and frames, and the development of (property preserving) conservative numerical techniques with applications in fields, waves and signal processing shall enrich the presentation. In conclusion, a thorough discussion of challenges, still persisting in photonic-, plasmonic-, polariton- and quantum physics-based device modelling, shall pave the way for the construction of future accelerated algorithms.
机译:现代电信和信号处理应用推动了声学,电子,光子,等离子体,极化子和分子设备的极端小型化。现代设备的设计,优化,建模和仿真的复杂性反映了其复杂制造过程中遇到的挑战。单个设备的复杂拓扑结构以及“智能”和“认知启用”系统以及系统间系统的迷宫状交织电路,都模糊了设备边界,使得对其操作和互连性的精确解释成为一项艰巨的任务。即将实现超小型设备,收获量子现象的前景给建模和设计规则增加了进一步的压力,这些规则尚待在牢固的基础上进行设计,微调,测试和建立。迫切需要一种新型的“数学”来应对设备的巨大结构和功能复杂性,从而要求对设备建模和设计进行真正的范例改变。电信工程应用中的微声学设备的小型化涉及大量物理和数学基础挑战,需要全面解决。本演示使用当今微声学设备中涉及的物理现象来传达已实现的各种使能的方法学进展。所开发的技术具有广阔的应用前景,包括太赫兹和量子级器件。考虑主要的市售分析工具;即有限元法(FEM),有限差分法FDM(频谱或时域公式)和边界元法(BEM),本演示着重于BEM。但是,BEM包含特定于问题的Dyadic Green函数(DGF),这些函数饱受强奇异度和强奇异度的困扰,严重困扰了数值计算,尤其是在边界表面的尖锐边缘和拐角附近。按照统一的方法考虑涉及(i)弹性,(ii)弹性电磁,(iii)热弹性电和(iv)热弹性电磁现象的现场问题。考虑了单各向异性,双各向异性和三各向异性,四各向异性的以及不均匀的介质,它们支持热波,声波和电磁波在无线电频率下的同时相互作用。提出的分析技术基于这样的猜想:“数学物理学中的线性化控制方程和本构方程是对角线化的”。在热弹电磁学的情况下,该陈述的有效性成立。最近的进一步严格结果表明存在补充对角线形式的方程组。对角化和补充偏微分方程的推导利用了数学物理学中的经典算子,这些算子采用了方便定义的“脚手架”矩阵,允许最终代数。所提出的对角化方程和相关联的补充方程使系统化的描述所涉及的物理现象成为可能,并导致了两种新颖的代数正则化和指数正则化技术。指数重新归一化方法对较早的临时正则化技术进行了概括和确定。结果提示了进一步的概括,以应对量子电动力学中遇到的重归一化挑战。此外,还介绍了FDM,FEM和BEM中标准配方的系统改进。因此,关键的统一工具是功能分析及其概括的“身份解析”概念。格林函数启发的小波和框架的构造,以及(属性保留)保守数值技术的发展以及在现场,波和信号处理中的应用,将丰富表示。总之,对挑战的透彻讨论仍然存在于基于光子,等离子,极化子和量子物理学的设备建模中,这将为构建未来的加速算法铺平道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号