首页> 外文会议>2016 Progress In Electromagnetic Research Symposium >The role of spin biochemistry in bioenergetics and reactive oxygen species product channeling
【24h】

The role of spin biochemistry in bioenergetics and reactive oxygen species product channeling

机译:自旋生物化学在生物能学和活性氧产物通道中的作用

获取原文
获取原文并翻译 | 示例

摘要

Summary form only given. This study presents experimental data and related theoretical calculations for the effects of static and radio frequency magnetic fields in the biological production of reactive oxygen species (ROS). This paper discusses a mechanism of spin-biochemistry providing a fundamental relation between bioenergetics and ROS product channeling. Intracellular superoxide (O2.-) and extracellular hydrogen peroxide (H2O2) were investigated in vitro along with respiration and glycolysis with primary human umbilical vein endothelial cells (HUVECs). Theoretical analysis considers RF magnetic field effects in a one-proton radical pair model. HUVECs were exposed to either 50 μT static magnetic fields (SMF), or to static magnetic fields combined with 1.4 or 7MHz RF magnetic fields in parallel or perpendicular corresponding to Zeeman and hyperfine interactions, respectively. We observe differential changes in bioenergetics and in consumption of O2.- and production H2O2 as a function of angle between SMF and RF magnetic fields. There are several notable results from the 1.4MHz (Zeeman) preliminary data. In perpendicular mode, both ROS are decreased but not in the same proportion - less O2.- than H2O2, respiration is unchanged, whereas glycolytic activity is increased. The decrease in ROS production with enhanced glycolytic activity may be due to effective scavenging of ROS by pyruvate. In parallel mode, a decrease in O2.- and an increase in H2O2 is observed, respiration is increased, whereas glycolysis is unchanged. The orientation effects that lead to specific ROS product distribution is consistent with the spin biochemistry model; however, we do not know the specific spin biochemistry targets or signaling channels that lead to changes in bioenergetics. We propose that O2.- and H2O2 production in metabolic processes occur through singlet-triplet modulation of semiquinone flavin (FADH.) enzymes and O2.- spin-correlated radical pairs. Spin-radical pair products are modulated by the RF magnetic fields that presumably decouple flavin hyperfine interactions during spin coherence. RF flavin hyperfine decoupling results in changes of H2O2 singlet state products, which creates cellular oxidative stress and acts as a secondary messenger that affects bioenergetics. This study demonstrates the interplay between O2.- and H2O2 production when influenced by RF magnetic fields and underscores the subtle effects of low-frequency magnetic fields on oxidative metabolism, ROS signaling, and cellular growth.
机译:仅提供摘要表格。这项研究提供了实验数据和相关的理论计算,以研究静态和射频磁场对活性氧(ROS)生物生产的影响。本文讨论了自旋生化机制,提供了生物能学与ROS产物通道之间的基本关系。体外研究了细胞内超氧化物(O2.-)和细胞外过氧化氢(H2O2)以及人类原发性脐带静脉内皮细胞(HUVEC)的呼吸作用和糖酵解作用。理论分析在一个质子自由基对模型中考虑了RF磁场的影响。 HUVEC分别暴露于50μT静态磁场(SMF)或与1.4或7MHz RF磁场组合的平行或垂直于Zeeman和超精细相互作用的静态磁场中。我们观察到生物能学和O2消耗量以及H2O2产生量的不同变化,这些变化是SMF和RF磁场之间夹角的函数。 1.4MHz(Zeeman)初步数据有几个显着结果。在垂直模式下,两种ROS均降低,但比例不同-O2-比H2O2少,呼吸作用不变,但糖酵解活性增加。具有增强的糖酵解活性的ROS产生的减少可能是由于丙酮酸有效清除了ROS。在平行模式下,观察到O2.-的减少和H2O2的增加,呼吸增加,而糖酵解未改变。导致特定ROS产物分布的取向效应与自旋生化模型一致;但是,我们不知道导致生物能学改变的特定自旋生物化学靶标或信号通道。我们提出在代谢过程中产生O2.-和H2O2是通过半醌黄素(FADH。)酶和O2.-自旋相关自由基对的单重态-三重态调节发生的。自旋自由基对产物由RF磁场调制,该磁场可能在自旋相干过程中使黄素超精细相互作用解耦。射频黄素超细去耦导致H2O2单线态产物的变化,这会产生细胞氧化应激并充当影响生物能的次级信使。这项研究证明了当受到RF磁场影响时,O2。-和H2O2产生之间的相互作用,并强调了低频磁场对氧化代谢,ROS信号传导和细胞生长的微妙影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号