【24h】

Offshore spreading of buoyant bulge from numerical simulations and laboratory experiments

机译:通过数值模拟和实验室实验在海上浮力膨胀的扩散

获取原文
获取原文并翻译 | 示例

摘要

The ability of a three-dimensional hydrodynamic model to reproduce buoyant water entering a coastal sea at laboratory scales of O[1 cm] is studied using Regional Ocean Modeling System (ROMS). ROMS is typically used for geophysical scale simulations. Inflowing water forms a growing anti-cyclonic buoyant bulge and coastal current. Available laboratory data is from a rotating circular basin experiment. The numerical domain is a rectangular basin with three open boundaries and a straight inflow channel for freshwater discharge. Altogether 11 pairs of laboratory-numerical simulation runs are analyzed. Three additional simulations are made to study the influence of ambient salinity. Rotation rate, ambient salinity and inflow rate-including oscillatory inflow as a proxy for tides, is varied. The present study concentrates on comparison of the bulge offshore front. Development of a bulge and downcoast coastal current was observed in all experiments. Two phases of bulge spreading are identified. An initial rapid spreading phase lasts 0.3–0.7 rotation periods and a following slow expansion that lasts until the end of the simulation. The shift from first phase to second coincides with the formation of the coastal current. Bulge front spreading agrees well with inflow Kelvin number ⌈. When K>1/K<1, the model underestimates/overestimates the bulge offshore reach. Physical processes of discharged water are altered in the inflow estuary before the water enters the main basin. With estuary widearrow in comparison to the deformation radius resulting with non-uniform outflow profile. These differences however do not notably alter the spreading during the second phase. Bulge front spreading is scaled with various non-dimensional parameters and best scaling is achieved during the first phase for laboratory simulation with internal radius and numerical bulge spreading with the bulge Rossby radius. During the second phase both scale with with the bulge - ossby radius. The numerical bulge expands at a steady rate of 0.10cm s-1 and laboratory bulge at 0.11cm s-1.
机译:使用区域海洋建模系统(ROMS),研究了三维水动力模型再现实验室规模为O [1 cm]进入沿海海域的浮力的能力。 ROMS通常用于地球物理规模模拟。流入的水形成不断增长的反气旋浮力凸起和沿海水流。可用的实验室数据来自旋转圆盆实验。数值域是一个具有三个开放边界的矩形水盆和一个用于淡水排放的直入流道。总共分析了11对实验室数字模拟运行。进行了三个附加的模拟来研究环境盐度的影响。旋转速率,环境盐度和流入速率(包括作为潮汐的代名词的振荡流入)是变化的。本研究着重于凸起的近海锋的比较。在所有实验中均观察到隆起和沿海近岸海流的发展。隆起扩散分为两个阶段。初始的快速扩展阶段持续0.3-0.7个旋转周期,随后的缓慢扩展阶段一直持续到模拟结束。从第一阶段到第二阶段的转变与海岸流的形成相吻合。隆起前端扩展与流入开尔文数⌈非常吻合。当K> 1 / K <1时,该模型低估/高估了凸出的近海距离。在水进入主流域之前,流入河口的排出水的物理过程会发生变化。与变形半径相比,河口宽/窄,导致流出轮廓不均匀。但是,这些差异不会明显改变第二阶段的扩展。凸部前部扩展使用各种无量纲参数进行缩放,并在第一阶段进行最佳模拟,以便在实验室模拟中使用内部半径和数值凸部扩展(具有凸部Rossby半径)。在第二阶段中,两者都随着隆起而变化-奥斯比半径。数值凸起以0.10cm s-1的稳定速率扩展,而实验室凸起以0.11cm s-1的速率扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号