首页> 外文会议>2012 Symposium on Application Accelerators in High Performance Computing. >FPGA-Accelerated Isotope Pattern Calculator for Use in Simulated Mass Spectrometry Peptide and Protein Chemistry
【24h】

FPGA-Accelerated Isotope Pattern Calculator for Use in Simulated Mass Spectrometry Peptide and Protein Chemistry

机译:FPGA加速同位素模式计算器,用于模拟质谱法肽和蛋白质化学

获取原文
获取原文并翻译 | 示例

摘要

Over the past 20 to 30 years, the analysis of tandem mass spectrometry data generated from protein fragments has become the dominant method for the identification and classification of unknown protein samples. With wide ranging application in numerous scientific disciplines such as pharmaceutical research, cancer diagnostics, and bacterial identification, the need for accurate protein identification remains important, and the ability to produce more accurate identifications at faster rates would be of great benefit to society as a whole. As a key step towards improving the speed, and thus achievable accuracy, of protein identification algorithms, this paper presents a FPGA-based solution that considerably accelerates the Isotope Pattern Calculator, a computationally intense subroutine common in de novo protein identification. Although previous work shows incremental progress in the acceleration of software-based IPC (mainly by sacrificing accuracy for speed), to the best of our knowledge this is the first work to consider IPC on FPGAs. In this paper, we describe the design and implementation of an efficient and configurable IPC kernel. The described design provides 23 customization parameters allowing for general use within many protein identification algorithms. We discuss several parameter tradeoffs and demonstrate experimentally their effect on performance when comparing execution of optimized IPC software with various configurations of our hardware IPC solution, we demonstrate between 72 and 566 speedup on a single Stratix IV E530 FPGA. Finally, a favorable IPC configuration is scaled to multiple FPGAs, where a best-case speedup of 3340 on 16 FPGAs is observed when experimentally evaluated on a single node of Novo-G, the reconfigurable supercomputer in the NSF CHREC Center at Florida.
机译:在过去的20到30年中,从蛋白质片段生成的串联质谱数据的分析已成为鉴定和分类未知蛋白质样品的主要方法。随着在众多科学研究领域(例如药物研究,癌症诊断和细菌鉴定)的广泛应用,对精确蛋白质鉴定的需求仍然很重要,以更快的速度产生更准确鉴定的能力将对整个社会大有裨益。 。作为提高蛋白质鉴定算法的速度并因此提高准确性的关键一步,本文提出了一种基于FPGA的解决方案,该解决方案极大地加快了同位素模式计算器的工作,同位素模式计算器是一种从头进行蛋白质鉴定的计算密集型子程序。尽管先前的工作显示出在加速基于软件的IPC方面的进步(主要是通过牺牲速度的准确性),但据我们所知,这是在FPGA上考虑IPC的第一项工作。在本文中,我们描述了一种高效且可配置的IPC内核的设计和实现。所描述的设计提供了23种自定义参数,可在许多蛋白质识别算法中通用使用。当将优化的IPC软件的执行与我们的硬件IPC解决方案的各种配置进行比较时,我们讨论了几个参数折衷方案,并通过实验证明了它们对性能的影响,我们在单个Stratix IV E530 FPGA上演示了72至566倍的加速。最终,将有利的IPC配置扩展到多个FPGA,在佛罗里达州NSF CHREC中心的可重配置超级计算机Novo-G的单个节点上进行实验评估时,可以观察到16个FPGA上3340的最佳情况加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号