首页> 外文会议>2012 SC Companion: High Performance Computing, Networking, Storage and Analysis. >Enabling In Situ Pre- and Post-processing for Exascale Hemodynamic Simulations - A Co-design Study with the Sparse Geometry Lattice-Boltzmann Code HemeLB
【24h】

Enabling In Situ Pre- and Post-processing for Exascale Hemodynamic Simulations - A Co-design Study with the Sparse Geometry Lattice-Boltzmann Code HemeLB

机译:支持百亿分之一的血流动力学模拟的原位预处理和后处理-与稀疏几何格形-玻尔兹曼编码HemeLB的共同设计研究

获取原文
获取原文并翻译 | 示例

摘要

Today's fluid simulations deal with complex geometries and numerical data on an extreme scale. As computation approaches the exascale, it will no longer be possible to write and store the full-sized data set. textit{In situ} data analysis and scientific visualisation provide feasible solutions to the analysis of complex large scaled CFD simulations. To bring pre- and post-processing to the exascale we must consider modifications to data structure and memory layout, and address latency and error resiliency. In this respect, a particular challenge is the exascale data processing for the sparse geometry lattice-Boltzmann code HemeLB, intended for hemodynamic simulations. In this paper, we assess the needs and challenges of HemeLB users and sketch a co-design infrastructure and system architecture for pre- and post-processing the simulation data. To enable in situ data visualisation and analysis during a running simulation, post-processing needs to work on a reduced subset of the original data. Particular choices of data structure and visualisation techniques need to be co-designed with the application scientists in order to achieve efficient and interactive data processing and analysis. In this work, we focus on the hierarchical data structure and suitable visualisation techniques which provide possible solutions to interactive in situ data processing at exascale. Architectural challenges and road-maps will be presented as the major focus of this paper. We sketch a software architecture which integrates pre- and post-processing techniques that can provide in situ analysis and ultimately computational steering to HemeLB.
机译:当今的流体模拟以极大的规模处理复杂的几何形状和数值数据。随着计算接近万亿级,将不再可能写入和存储完整数据集。 textit {Insitu}数据分析和科学可视化为复杂的大规模CFD模拟分析提供了可行的解决方案。为了使前处理和后处理达到万亿级,我们必须考虑对数据结构和内存布局进行修改,并解决延迟和错误恢复能力。在这方面,一个特殊的挑战是稀疏几何晶格-玻尔兹曼代码HemeLB的百亿亿次数据处理,旨在进行血液动力学模拟。在本文中,我们评估了HemeLB用户的需求和挑战,并勾勒出了共同设计的基础架构和系统架构,用于对模拟数据进行预处理和后处理。为了在运行模拟过程中实现现场数据的可视化和分析,后处理需要对原始数据的缩小子集进行处理。数据结构和可视化技术的特定选择需要与应用科学家共同设计,以实现高效且交互式的数据处理和分析。在这项工作中,我们专注于分层数据结构和合适的可视化技术,这些技术为百亿亿次交互式现场数据处理提供了可能的解决方案。建筑挑战和路线图将作为本文的主要重点。我们绘制了一个软件体系结构,该体系结构集成了可以提供就地分析并最终向HemeLB提供计算指导的预处理和后处理技术。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号