首页> 外文会议>2012 International Conference on Enabling Science and Nanotechnology >Acrylated vegetable oil nanoparticle as a carrier and controlled release of the anticancer drug-thymoquinone
【24h】

Acrylated vegetable oil nanoparticle as a carrier and controlled release of the anticancer drug-thymoquinone

机译:丙烯酸类植物油纳米颗粒为载体和抗癌药胸腺醌的控释

获取原文
获取原文并翻译 | 示例

摘要

Over the past few decades, there have been considerable interests in developing biomaterials e.g. micro- or nano-particles and micro-or nano-gels as effective drug delivery carriers. Various polymers e.g. synthetic and natural polymers, have been used in developmental of the drug carrier. Recently, in Malaysia, a group of nuclear scientist from Malaysian Nuclear Agency and University Putra Malaysia had successfully developed micro- and nano particles from natural polymer i.e. vegetable oils product using radiation-induced initiator method [1–3]. This vegetable oil product is known as acrylated vegetable oil (AVO) consists of crosslinked nanostructure when subjected to ionizing radiation sources i.e. gamma ray and electron beam was successfully utilized using the local radiation facility for the formation of micro-and nanoparticle carrier based vegetable oil product. Due to this, in this present study, the acrylated vegetable oil nanostructure was used as drug delivery system (DDS) for the incorporation of the bioactive material i.e. Thymoquinone. The work included study on the process for production of the thymoquinone-loaded AVO nanoparticle using radiation-induced method, physiochemical of the product and evaluation of its application in controlled-drug-release applications. The present study obtained varied sizes of the thymoquinone-loaded AVO micro- and nanoparticle (Table 1). Size of the thymoquinone-loaded AVO micro- and nanoparticle is in the range of nanometer and submicron as determined using dynamic light scattering (DLS) (Nanophox, Sympatec). The size of the particle was increasing when the irradiation dose increasing. As a result particle sized is in the range of 150 nm to 220 nm after irradiation at 1 to 25 kGy, respectively (Table 1). Decrease in mean diameter of the AVO micro- and nanoparticle indicates a strong shrinkage of the polymer coils resulting from the crosslinking in the AVO macromolecule structure [1–3]. This crosslinking p-nlymerization leads to the formation of smaller particles, due to the intraparticle crosslinking and to the hampered diffusion of monomer molecules to the macromolecule structure [1–5]. Furthermore, Figure 1 shows the Fourier Transform Infra Red (FTIR) (Shidmazu, Japan) chemical structure of the thymoquinone-loaded AVO micro- and nanoparticle before and after irradiation. The irradiation sensitive functional group i.e. carbon double bond (C=C, acrylic functional group) was found disappeared after the sample was irradiated at wavenumber of υ= 1410, 1620 and 1637 cm−1 which revealed that the sample was undergone crosslinking. Besides that, the thymoquinone functional group i.e. dimethyl-p-benzoquina at wavenumber 1240–1250 cm−1 is still presence in the AVO micro- and nanoparticle after irradiation (Figure 1). It shows that the thymoquinone was successfully incorporated in the AVO micro- and nanoparticle. The transmission electron microscopy (TEM) (Jeol, Japan) image obtained showed that, the thymoquinone-loaded AVO micro- and nanoparticle is spherical in shape as shown in Figure 2. The study also showed that the AVO micro- and nanoparticle can retain and controlled the release rate of the thymoquinone, see Figure 3. Figure 3 shows the release percentage of the thymoquinone in the 0.2 mol/L of phosphate buffer solution (PBS, pH 7.4) at 37°C as determined using Ultraviolet-visible (UV-Vis) spectrophotometer (Shidmazu, Japan). The study also revealed that such smaller particles can retain the active substance to longer period compared to that larger particle (Figure 3). This study showed that the AVO nanoparticles have successfully incorporated the thymoquinone by radiation-induced initiator method in the microemulsion system. The results obtained showed that, crosslinked nanostructure of the AVO nanoparticle contributed in the incorporation and controlling the release rate of the thymo
机译:在过去的几十年中,在开发生物材料方面有相当大的兴趣。微米或纳米颗粒以及微米或纳米凝胶作为有效的药物递送载体。各种聚合物,例如合成和天然聚合物已用于药物载体的开发。最近,在马来西亚,来自马来西亚核能机构和马来西亚博特拉大学的一组核科学家已经成功地使用辐射诱导引发剂方法从天然聚合物(即植物油产品)中开发出了微米级和纳米级颗粒[1-3]。这种植物油产品被称为丙烯酸酯类植物油(AVO),当它受到电离辐射源(即伽马射线和电子束)的电离辐射源的成功利用局部辐射设施形成基于微米和纳米颗粒载体的植物油产品时,它由交联的纳米结构组成。因此,在本研究中,丙烯酸酯化的植物油纳米结构被用作药物输送系统(DDS),用于掺入生物活性物质即胸腺醌。这项工作包括研究使用辐射诱导方法生产负载胸腺嘧啶的AVO纳米颗粒的工艺,产品的理化作用以及对其在控释药物中的应用的评估。本研究获得了载有胸腺醌的AVO微粒和纳米微粒的大小各异(表1)。如使用动态光散射(DLS)(Nanophox,Sympatec)所确定,负载胸腺醌的AVO微粒和纳米微粒的大小在纳米和亚微米范围内。当照射剂量增加时,颗粒的尺寸增加。结果,在以1至25kGy照射后,粒径分别在150nm至220nm的范围内(表1)。 AVO微粒和纳米颗粒的平均直径减小表明,由于AVO大分子结构中的交联而导致聚合物线圈的强烈收缩[1-3]。由于粒子内的交联以及单体分子向大分子结构的扩散受阻[1-5],这种交联的p-二聚导致形成较小的粒子。此外,图1显示了在照射之前和之后,载有胸腺醌的AVO微粒和纳米颗粒的傅里叶变换红外(FTIR)化学结构(日本岛津,日本)。在以υ= 1410、1620和1637 cm -1 的波数辐照样品后,发现辐射敏感性官能团即碳双键(C = C,丙烯酸官能团)消失了,这表明样品进行交联。除此之外,在照射后,AVO微粒和纳米粒子中仍存在波数为1240–1250 cm -1 的胸腺醌官能团,即二甲基对苯甲醌(图1)。它表明胸腺醌已成功地掺入AVO微粒和纳米颗粒中。获得的透射电子显微镜(TEM)图像显示,如图2所示,负载胸腺醌的AVO微米和纳米颗粒呈球形。研究还表明,AVO微米和纳米颗粒可以保留并保留。控制了胸腺醌的释放速率,请参见图3。图3显示了在37℃下使用紫外可见光(UV-UV)测定的0.2 mol / L磷酸盐缓冲溶液(PBS,pH 7.4)中胸腺醌的释放百分比。可见)分光光度计(日本岛津市)。研究还显示,与较大的颗粒相比,这种较小的颗粒可以保留活性物质更长的时间(图3)。这项研究表明,AVO纳米粒子已通过辐射诱导引发剂方法成功地将胸腺醌掺入微乳液体系中。获得的结果表明,AVO纳米颗粒的交联纳米结构有助于胸腺的掺入并控制其释放速率

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号