首页> 外文会议>2012 IEEE International Symposium on Information Theory Proceedings >Polar coding to achieve the Holevo capacity of a pure-loss optical channel
【24h】

Polar coding to achieve the Holevo capacity of a pure-loss optical channel

机译:极性编码可实现纯损耗光通道的Holevo容量

获取原文
获取原文并翻译 | 示例

摘要

In the low-energy high-energy-efficiency regime of classical optical communications — relevant to deep-space optical channels — there is a big gap between reliable communication rates achievable via conventional optical receivers and the ultimate (Holevo) capacity. Achieving the Holevo capacity requires not only optimal codes but also receivers that make collective measurements on long (modulated) codeword waveforms, and it is impossible to implement these collective measurements via symbol-by-symbol detection along with classical postprocessing [1], [2]. Here, we apply our recent results on the classical-quantum polar code [3] — the first near-explicit, linear, symmetric-Holevo-rate achieving code — to the lossy optical channel, and we show that it almost closes the entire gap to the Holevo capacity in the low photon number regime. In contrast, Arikan''s original polar codes, applied to the DMC induced by the physical optical channel paired with any conceivable structured optical receiver (including optical homodyne, heterodyne, or direct-detection) fails to achieve the ultimate Holevo limit to channel capacity. However, our polar code construction (which uses the quantum fidelity as a channel parameter rather than the classical Bhattacharyya quantity to choose the “good channels” in the polar-code construction), paired with a quantum successive-cancellation receiver — which involves a sequence of collective non-destructive binary projective measurements on the joint quantum state of the received codeword waveform — can attain the Holevo limit, and can hence in principle achieve higher rates than Arikan''s polar code and decoder directly applied to the optical channel. However, even a theoretical recipe for construction of an optical realization of the quantum successive-cancellation receiver remains an open question.
机译:在与深空光信道有关的经典光通信的低能量高能量效率体制中,通过常规光接收器可获得的可靠通信速率与最终(Holevo)容量之间存在很大差距。要获得Holevo容量,不仅需要最佳代码,而且还需要对长(调制)码字波形进行集体测量的接收器,并且不可能通过逐个符号检测以及经典的后处理来实现这些集体测量[1],[2] ]。在这里,我们将我们的最新结果应用于经典的量子极坐标码[3]-第一个近显式,线性,对称霍列夫速率实现码-到有损光信道,我们证明它几乎弥合了整个间隙在低光子数状态下的霍夫容量。相反,应用于物理光通道与任何可能的结构化光接收器(包括光学零差,外差或直接检测)配对的DMC所应用到DMC的Arikan原始极性代码无法达到信道容量的最终Holevo极限。但是,我们的极化代码构造(使用量子保真度作为信道参数,而不是经典的Bhattacharyya量来选择极化代码构造中的“良好信道”),与量子连续取消接收器配对,这涉及一个序列对接收到的码字波形的联合量子状态进行集体非破坏性二进制射影测量的结果-可以达到Holevo极限,因此原则上可以实现比直接应用于光通道的Arikan极地码和解码器更高的速率。然而,即使构造量子连续消除接收器的光学实现的理论方法仍然是一个悬而未决的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号