首页> 外文会议>2012 Abstracts 39th IEEE International Conference on Plasma Science. >3D particle-in-cell simulations of small-diameter self-magnetic-pinch diodes
【24h】

3D particle-in-cell simulations of small-diameter self-magnetic-pinch diodes

机译:小直径自磁捏二极管的3D粒子模拟

获取原文

摘要

Flash x-radiography usually involves the creation of a pulse of intense bremsstrahlung whose duration is short compared to the motion of the object being radiographed. In many applications it is also desirable to have a very bright source that produces high-spatial-resolution images. For these applications a figure-of-merit (FOM) that provides a measure of the source brightness can be defined as, FOM = D/R2, where D is the dose in CaF2 at a distance of 1 m from the source and R (usually referred to as the radiographic spot size) is a number that characterizes the spatial extent of the radiation source. One method of creating a high FOM source uses a self-magnetic-pinch (SMP) electron-beam diode. [1] In relevant experiments on RITS-6 [2] and Mercury [3] inductive voltage adders IVA's, magnetically-insulated electron-flow in the adder can be a significant fraction of the current available to drive the SMP. It is believed that the magnetically-insulated flow produces an undesirably large radiographic spot if it is allowed to strike the x-ray target. Therefore, the approach adopted on RITS-6 and Mercury has been to dump this electron flow prior to the x-ray target. This usually involves the use of very large hardware and a loss of up to 50% of the available current. In this talk, we will present results from 3D LSP [4] particle-in-cell simulations of the coupling of magnetically-insulated electron-flow to an SMP diode. These simulations show that asymmetries in the electrical power-flow can cause the radiographic spot to wander. These simulations further show that nearly all the electrical current can be coupled to the SMP diode. However, in this situation the radiographic spot size is larger than cases without electron-flow in the SMP diode. In this paper we use LSP to explore methods of stabilizing the position and reducing the size of the radiographic spot.
机译:闪光灯X射线照相通常涉及产生强烈的致辐射脉冲,与被射线照像的物体的运动相比,其持续时间短。在许多应用中,还希望具有产生高空间分辨率图像的非常明亮的光源。对于这些应用,可以将提供光源亮度度量的品质因数(FOM)定义为FOM = D / R 2 ,其中D是在CaF2中距离为距放射源1 m且R(通常称为射线照相光斑尺寸)是表征放射源空间范围的数字。创建高FOM源的一种方法是使用自磁夹(SMP)电子束二极管。 [1]在有关RITS-6 [2]和Mercury [3]感应电压加法器IVA的相关实验中,加法器中的磁绝缘电子流可能是可驱动SMP的电流的很大一部分。可以相信,如果允许磁绝缘流撞击X射线目标,则会产生不希望的大射线照相点。因此,在RITS-6和Mercury上采用的方法一直是在X射线靶之前倾倒电子流。这通常涉及使用非常大的硬件,并损失高达50%的可用电流。在本次演讲中,我们将介绍3D LSP [4]的粒子内模拟结果,这些模拟结果是将磁绝缘电子流耦合到SMP二极管。这些模拟表明,电力流中的不对称会导致射线照相点漂移。这些模拟进一步表明,几乎所有电流都可以耦合到SMP二极管。但是,在这种情况下,射线照相光斑的大小要比SMP二极管中没有电子流的情况大。在本文中,我们使用LSP来探索稳定位置和减小射线照相点尺寸的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号